(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 662734, 12574]
NotebookOptionsPosition[ 373949, 7705]
NotebookOutlinePosition[ 657979, 12413]
CellTagsIndexPosition[ 657936, 12410]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Optical Character Recognition with Neural Networks ", "Title",
CellChangeTimes->{{3.5496241220858183`*^9, 3.5496241316698093`*^9}, {
3.549818710673188*^9, 3.5498187115316067`*^9}, {3.5498190276432457`*^9,
3.549819032858705*^9}, 3.6768395288942833`*^9}],
Cell["Brian Mayer", "Text",
CellChangeTimes->{{3.549624168509506*^9, 3.549624171985794*^9}, {
3.549624508772977*^9, 3.549624510775043*^9}, {3.5498187159613867`*^9,
3.5498187170087957`*^9}, {3.549819049020514*^9, 3.5498190533440437`*^9}, {
3.676839535949759*^9, 3.676839542654063*^9}}],
Cell["Sebastian Bodenstein", "Text",
CellChangeTimes->{{3.549624515773694*^9, 3.5496245246892014`*^9}, {
3.5498187208956137`*^9, 3.5498187221413403`*^9}, {3.5498190558319674`*^9,
3.54981906151682*^9}, {3.676839545315526*^9, 3.676839550721953*^9}}],
Cell[CellGroupData[{
Cell["Homework Solution", "Section",
CellChangeTimes->{{3.549818919239108*^9, 3.549818922359429*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"array", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", " ", "==", " ", "y", " ", "==", " ", "100"}], ",", " ",
"1", ",", " ", "0"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "199"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"y", ",", " ", "199"}], "}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{
3.549545559305146*^9, {3.549545608589827*^9, 3.549545815029195*^9}, {
3.5498187372950573`*^9, 3.549818747744714*^9}, {3.549818974030775*^9,
3.549818975064218*^9}, {3.676839425522295*^9, 3.676839439755788*^9}}],
Cell[BoxData[
RowBox[{"ListAnimate", "[", "\n",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ArrayPlot", "[", "\n",
RowBox[{"CellularAutomaton", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Fibonacci", "[", "44", "]"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}]}], "}"}], ",", "\n", "array", ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{"{", "k", "}"}], "}"}], "}"}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",", " ", "100"}], "}"}]}], "]"}], ",", "10"}],
"]"}]], "Input",
CellChangeTimes->{{3.6768394795170403`*^9, 3.676839504239316*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Project Description", "Section",
CellChangeTimes->{{3.549542031484871*^9, 3.5495420379109707`*^9}}],
Cell["\<\
This project aims at developing a useful optical character recognition by \
means of a neural network. It is planed that the network will be able to \
understand every glyph in the world, that is, when a glyph is given as input, \
the net should give the correct character as output. For that, a set \
containing all glyphs should be provided, so that we can apply many image \
transformations, like those in images, to train the net with a very \
comprehensive training set.
The net is a feed forward neural network with 100000 neurons with dot product \
architecture and sigmoidal activation function, which will be fed with those \
glyphs throughout encoding to a tensor. So those glyphs, will be transformed \
from images to tensors, this is the main reason there must be many neurons, \
the input is probably a big tensor, say 300x400. By feeding in many fonts it \
is likely that the net will recognize handwriting and other variations.\
\>", "Text",
CellChangeTimes->{{3.675779270003018*^9, 3.67577933510336*^9}, {
3.675779485755169*^9, 3.6757798198124943`*^9}, {3.675779851000587*^9,
3.675779927761877*^9}, {3.675779974827883*^9, 3.675779982126113*^9}, {
3.675780039594882*^9, 3.675780083822262*^9}, {3.675780115191799*^9,
3.675780148792253*^9}, {3.6757802603236427`*^9, 3.6757803956604443`*^9}, {
3.675780447313835*^9, 3.675780478119266*^9}, {3.6757806270126677`*^9,
3.675780673402066*^9}, {3.675783065821801*^9, 3.675783079097036*^9}, {
3.675783119142357*^9, 3.6757831783404922`*^9}, {3.675783272478094*^9,
3.675783281971018*^9}, {3.6757833312744637`*^9, 3.675783367352228*^9}, {
3.675783527418499*^9, 3.6757835680102453`*^9}, {3.675783673670656*^9,
3.675783733766613*^9}, {3.675784059104535*^9, 3.6757840628291283`*^9}},
CellID->28],
Cell[BoxData[
RowBox[{
RowBox[{"images", "=",
RowBox[{"{",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnb1rHsmWxofd5Ib7L+x/selGmo0GvOwECgy63PHFiRfPFSyLYBLjYMCZ
QMGAIgVmQIkiwyRyZJQpGFBgHCzGkcGJkwn0Bvu773N1KHW/b6k/qqqr+z0P
jNDI3dVVp546H1Wnqv71z//96Mk/ffPNN3/7Ez8eHfzPv//448H//ue/8D//
9exvT//67Ie//Mezwx/++sOP//bnf+aP//eP//7++21OrNZo/2K/d3z9wWfs
sdUWPPh6BF3eilcy8vVGMzMJJy6fLq9PIpzB706O8SIaJvy5wIVTOSIyfFDa
ixe+C6dmuCqIwFVlDXD5R+DCSQuXZwQunGkRMUZuquLN33Hh1AaXfwQunIRw
YUbgmnByuPwjcH4WgEs4Ameg40F4TBGBC2dypA17F9aVPifQQCZRdJyfSf7d
5Nhl4bTrWUOthmFjK8Y0bcHC2Sif8WX2KqT783MXflYsgJxZ4cJxzBROWkfN
yKpaXWnH4cKJwI2+o344Px2OjfChEYELZ9bw7ovAhTMtfDoxAhdOYWxcpxi8
4rAkRASyTT47K6tM+Pr16+fPnz99+vT+/fubAO/XuHFsQhfh8MDHjx+RLRKe
upPnij/++ANm/v7772/fvj0/Pz9zpAPyvLy8RLZIGDm7Xu0LJMbQZqS/efPm
l19+OTo6euZIh59++un09PS3335DkTo/BwCJffny5erqisGOML///vtvHenw
+PHjly9f/vrrr6hQ9IDzsy+QGN4RNgjleXh4+N133+050gF+vnjxIis/U4Wu
1YbAOPAYoOPjY+yR8zMhpD9T8bMAeQpQtO8ncIpwjS4uLl69evXkyRNEOnWv
LgfGz9evX6fSn3WquC4YMFfJY/AT0THAcZMQpvMzLRr6M2FHJymqZqiZjeBo
6v5cGoyf19fXBaZAF8ZbBUdv3749PT0lOHr06NHU/bk0FIiPFgzE9enTJ4Kj
k5MTD46SI4f/uWv48OHDmzdvCI6ePn3qzmdapI3fdw22cnR+fk5wdHBw4PxM
C+fnGIif+O1YH4Kj/f39qftzaQj5qfioWn5WOCeg4F3B0dHRkQdHyeH+50gQ
HF1eXhIcPX/+3IOj5HD7PhIKjo6Pjz04ygHn52Bo5Yjg6OLi4ueff/bgKAec
n4MRBkcI0Fc2c6BMfl2Foc14KDh69+7d2dkZwZGvbGbC/v6+689hSJj2qVzc
79Z45Ajw5MkT3Kfz8/Px+SEL2KXYK38pYdonHYEhI8iC6qgLLFrjp8H+N/JM
++EH/9j4e/v3bT+7PNP3ZwjECzmxU4SiOPwFOFAzOpJTwZHSPhndI9M+eRcr
9vz5c4rCW3jjCICFwsmHnFirtPyctSKNI23aJ7oXhr969UpWjI7As9XPjvi8
CRsf6/h63+92r+qAtzDrfZk5dzs+EgreU6V9YtxRnvix6Ap6bdO5BbuO20Wr
uxxQ2qeCo0fjVjah99HR0enpKV4W6iLeEdu6r+PDXUoeLpShmJaZU7U6KxKm
fWoK5fXr15lSIBYpf0cECo7epEj75N2DgwNNodzc3IwJASZUgLPAtPJJ8t2O
RlMrm6mCIxh+fHyMNiZKLVD/JOWPLyRVlQZ8unwFSn53dRccJUn7DIMjfIZU
NZyvIi3TgzMVThes7lY2k6R9Kjg6OztTcDR146bHgplTDAnTPsPgyM+/ciRB
mPY5hp84rlpfvri4UHDUi58TTgfV/9GlGvH2/FvjXxUcEW6PT/sMg6OPHz/e
duuFacUel0/fQnp9a5F8G4yNMlndT/scHxwdHh4SHL19+/bz58+3U3OvO4px
xskZR5ufX9KlfTaCo43quuaumbxiNQunGEwI+mlpnwRHI4P3cPPsRudzGD8L
d9mEbnD9wikPgiOlfSYMjnR49cbPuYqIwIXTgFY2FRyNTPuE28+ePesbHOWD
d3QExdzsMTVR8I4txiK/WO+JG0zOvWDlyIKj24kUQhLhDP7oNkTeSlWHvvUs
+d1hSJj2yesUQlEUGAZHs5BDKoS+/byYkAPjhZAw7bO2nd0dNdjOoqNwBkuv
uxGJQHvixqd9toOjyfng/Iygr3CS8LPv6/xMdRVCOziaHM7PCGYhnMaeuMHk
3Nu0cuRwjMEqadpnIziaunGOJcDSPkcGR+1jhaZumWPekL8Rpn2O5Kc2vMdX
jhwOoaO7m2pPXIXBUQR1xgL1IFO41DcWU3CU5CoEBUf4CdUGR6FknJ9tFBBO
L9qvkqZ9KjiiqMbKUT2odgqlElQon3BP3JiVzUZwVMPMvGPW0GBRcDQ+7RN+
4r7ixOLK4tDeugF1jIP4kyrtU8HRycnJyOCopImZ4wgqKZwa5GNpn0mCowIr
R+0luVks0hVGEiFMLkmlfdpVCIPJuXc/OGqnLQ2gTZx1f3TAtqLGSCwTRtZq
wnGa9Sup9sTpNDAFRxs3vPeVGCV8XQNVjIeMw4AfgqqncIKv6zWutkD/+vsa
PM9bvEsJlKPDYwccDLsRCbsmFZ0qH4Z9QZclSfsMg6Nhp4FBGJhDfXgdUkEw
Bg6BGwVeXFzggcB8lDND6fT09Jc1TtbAcz5pQQ/w5NkavMjrFEJpuMc0GRrD
XqgLbyFtKsa2sQyeTIVUVyHwLuE/xNBpYF3GrzQk3ICQUMXYCJFgFOyiVnjF
OB64Dah3RhCfoJ4MhCdrHGzBkzvwJM/z1uEalENplMk4oqqwF96KtDCWEcG4
aNA1rSKq382oDamuQghXjuIz8yEneZjRIUJCGKoBhSgHUlEf/OH9/X1Khvzf
ttClVuHzdscNbgwli71QF+bjlsBYRgTVgK5UicFiXA2JmtAEjy9n8UiY9gmR
FBxtOyqZP6JXGQ4YVnESMsMKFBoMgSrovZCNYyrTEcZbYyzjQnRFdVM9uIpK
p8JUm8p7OlZhpEr7tOBIRyWH/GQISFuKlnwLPcmTKEk4CSvghqnHhNzrWO32
X6RgaY5xlQozmqi8E7UvRjoz2hOXJO2zHRxJYUJXPgFvsZ70NfaUrocAfK7m
az1NtTJs0atUWzdqMb4gqu4two2ZbwJhQk944+vb/mh/7/JR/CulfaYKjrRy
BDP5iecghQlvUUT0Mn1dzHYnhPkAjCyayShjrDHiGHeoUwVTY/q3MLYRoy95
CiDVnjiUIQyk1yCkZh1RpKhlKUyMeOXasiNCjYpHhNwYfQxw2rvR6FfSyzNF
I+1zTMfRZXgImD/FvzATa4hOhplzVJgPghaZOtXVjQxMPJlFuqZTzYalTfvU
DbA/rQEzZ2rKe0HBFGOQ9jLGYSm6dHksLcbMxodwnJKkfe6t7TuEfLzGLjAz
hLFUrinjHb8Ulia/9XUqlOSnKerVXdrn+KsQhs2cLwxiqSy+7sO9urpSjN/o
4tV2xHst7LtdWIHSVQi2J243eZUW5pdikjSbsTF06sLMCI2XTUsh4VUIjgYU
4zPqcexxSjUN1X2ydDcJ2UAYHI1c2XS0oZkoOaXHx8cXFxdIu2Pc5Py8TZf2
6YhA5l6TpboqwjzSOHacnKt1cKS0z/FXITjikCI9PDyUR7qk0D4fPn78qHvi
nj17NiPnsz1XMItJAylSPFLdNi5b30jb201VuQ2MYkv7nLr37sESM5RHpGlV
yzRWsnEb+icl6SknKswanbpNf4fZet1JenV1pUSFqYlQIyzts4bgqJ2EqXR3
6qa0YW3faGzWCKE/atMHT/KKsu5xrSlKpK0kY4pmavaJ2uKOOkU3AhfdrkIY
ubI5GGFSUJgVrCR2xg7qHW/t8vKSftRmt5s13t/hwxr6Xf/EM7TL9olgSWEv
TKBYCtfCq2VBT8VVc0e114AmzIKiJX0PuwqhfHBktAyTKpVVAqNERW2swEPT
RkttBYpsFl4FudDa08SLtJFCoK52NkF1PqFdJJYdPRVRjaI6K2AWFC3pHqfa
E9cLcsCUTQEt4QnKTZyEQu1NlPHAYePft5FWO574BMxXGr/ypXEDIAkjxXL4
y4hi7+6sqnwUnWPAZbVNlfbZEaYwMeJ8FCUGLcO9EsMmW7qHvQ26ar8Jiho3
AEeCkYLplzotvPUpNPRpfdH5zgmEe+JGpn0+CGMmBEBd81Hl9oQrKREBtu14
Q+Z9uyB8XkTVfj1Gq+WsFmYpFLVwySadujeki3w6CicfIjVsP4lvppXNfMGR
lIPpTBQU9tRWT+JdsK0Vg7XBto6zB6gSuguZKOcflpbUpfJFbesrFO3enPbf
+wqnLZ9p+czXwz1xOVY2LR+S8pVp1pGZ0yJkKT4hhJFfWoaifEu7XzFtO37p
Sao9cdtEjeZRPrkydXul7kwLHbCDfLD4UAWHhCFWZvMUn7Bz+5FY/eF8PjTS
PlNJ2BJ0w9THOS40i6VIicFFKCdzL0Waj6VyhyxWetDKLwmhR9FI+0woXmU8
6vw6Ld7Nwk5tc7cQFCTRRlRTpPnm4kR+OwCwEitf2B1d3b8KIdXKpmy6Eh3p
zZmqzY0wRapdWvAn33KGDJCsvI65WIYMu0PBke2JSyJqhZ/a/I5bK29z6oam
hBSpTgFiUBPI5HNHZYYQppJFd8rK3wZpn7Znc2S6mrIdCHWXne0gimJ3NGmc
laKK5e128kXKcxukP8MplKM1dDZmI1EtPGNTu4bB92s8WsO22Fi22ILtkSbz
7TgLUTQHP/fWhwnsZqB0G8zyYYvP1/h1jXaumqWr6YDiV2swrl/egd95wHbW
LJicBlHUtGimcOnb9R2mpkJ3QbAhLL1Hh7oLlqt2c4fwjPd3a1yu8dsaaGB+
5191QNbtbpw1JC1qJ1JiWZJT1JbezAut85rIfIiv267u56oZvt7hyx0s823a
5hSGfFGLMXFycjii0B7fyQL5qRtdGht1XfuPDzJ52yrwsnUpFNUahxIUczii
yhvBt9dc6E5FSfmweGYaMB9hDlgOR7TYZWeOrJhqRJiVV5pNcisvEz/mvh5h
RzRGtZhK/lj5MM07hwoNL4MebOKdnwVQp+eQ8IDKjVAUr7WPuImvUDh9kSQB
dUKe5E6g7Vs4T4bJNjl2yjTug47XbRci08qRm6J9K3O79kIvLy8z7YTVRD3+
gybqH6xPPcKpFrsmHMsHy7RZJrxVatemmh3jIROf5ILIjYDzynDQrXxTN9cx
P4THpCc38eFCZ/xW07kjvu6zjC8Oxpiq6iTVTFG85TIphK9ZhqkwnjBd3m33
+Fxk26vCq7stCZkOW0Mho5a1itTx1vJlYPKW1iznXvzURH2mk/xtigkXQvws
0Px6MCFLZ6FUO9bww4cPOs/q6dOnaReSYLvtO+YrlYtrQiSXzCz42RFoNviT
/EgB5YImWYV37DJS3XS2kaJzTwQtr4jan+sSB02iLcsIh8haq0jE2ln1Z9qG
FAtdO5Zvj42vz8bwvAtFR353GDpGOvZL33raeb/wM+0UqOIj+Z8PLsEPQ5lO
GSPexSO3cMIj19La9zB+z8TPEA/KZ7AAO2qw3URu4eTTnzb/mW9+qZdwhkmv
u4XdTRTgp2UxpdWf2uWhvfCZdnk4cxaPTPNLe0GK8tXV1cIODnIUgLRNvsv4
9vf3dbQy/PT8JUdfrO7WNzPdNxHuMvb8T0dfiJ+21xg6peXnwcGBruy8ubmZ
uq0psTFi6oVIURO2q0KEl/Glza8LJ+cf3N+RCTm628psHE2TBI2r3GaH5GMt
9+SSTX6Or2oXmFgy6SKVCZEIKhl019fX7969e7tG+5e+0F1vHz58mO8Jycmt
gJ11kzx5qZE8n6rCcZQxkTQHj4VxR+h3vIYuArafjf/t8hPoJiPdyuHh5O39
y86SJydbcISSmak22AYZHTlFurFXZ8yGP8Nf2nh8h/BJXV9u5/65L5rviIYa
nM98yLSisYB0r7TIZ9wbOzumamAmFzTTpi3dgbKwGY/BXRDeFJl8ZqmGmfl8
IRItsmN+054bMEZuSRobBjhTORiru2UjW9ZMGLkr7dOO+O51MsMsJgNX9yeN
027aau8o7F6rkRIL5z0ml78pT23bTKs8w5mljsbdRFGJfOLQolumewzDQ4EW
Fld2BK2W8sx0hHJopJaaFpJv05akRxTflt4s7Mt4hLckJD+CXlcgSQMsNQhd
ZbgqLhSgonhtem2o0MWTE687tE3JT6ZtH/u5PEmu7l+1mTZEiqvQRcJcX1l2
W9BMfrL34MhoXpAkUW7K+0rrgu7dPx19R7xQUVTZIJnmlMJbthdw/+aDnl64
byv56kb91/Al94R1bYcdmMwgzeF5llGek4QJ4Ydk4vOlJupyWJ2eWsl95XGM
7AVzO7ValPyKWLs2rsuB8znQIM+wF7s/vArmkDUNktyTp49suXPZGSM0DWfJ
DgnJeqFM7om7qqKtMHs2+QHUGvI2k0wPLpKijZgouSXaC0JOzXlWdSFXVgcg
9zU9uonPbjpb3hXwNEfk1Ewdjc10W1x4TkhV8WZuHzX3NT30V0jRJWnRMuRs
ePK1SS+3P2Aq1KLOHBI2ioaGfuRyUuHQsvEt8znzmfW9O8tuYZFmQrq0ekkr
IKEKzXQltOSML6pw6ebmxtY+IpJsE7j8pEcbjGhtQFBoCTlpWo5xjdDMsmtc
h5a9TuHkQCNdJIeo99ZalH5E2koQvb6+3uaO1ixwbd2i8prnpDmZRvRea8Jz
m9GpRzj5oHwwO8Y/k8ClEJA5oShmEf0jRSq1sNqSA1aJ/KkkVWUgo8qwNQiK
huSYShLkdtr1RuFSe53yyYrGJEk+nUCxoSJF+NpPF2fppLL5h0HHvOIFMYSx
MjgqiobySYnyQ7czYtknlExJyOEPV0BySN7kT/noB8YC3U2nw1J0qXVEJZI3
Zl5dXWHQT05O4ExWtbl356uHk3JVTShNiPYKcqYusI6go42l6FIsvvxSajIJ
Ue1b8jMZMjBEzMQnETNNLJkCST4R3soRup3F5FAtsLPhrq4CFDWWYjQZFygN
+ICPRzV01IOOJbnNb9ekLUVLrCqm5OzsjIFjOjOfQTdpiJyW+tWIiSKV3xGj
Tx/RQfQOXZNvzjnsEfsFi49dw7XguyIqdp9uCo8lMb1627lH2tGEPazjfSgW
jQ0ZMOJoS4Jl2o76IjZhyDBwlOyRlZkmAZpP2zUFp6SaXWBdL1ispNS7TJN7
2/ooJCpfhyRQhZrAVZiDXhVdoROVZCiJtCA8AKoB/ZMe+7QGbIcAqGiaiRlF
Y8NJRgTcwHCgwaClKczczNy705yWAWLkdGxEuHKnxZFiFA27jI/Sa3zduAp/
cAWpFXQSY1E1EEynPwlXLehEKbjNk7wCG3FgKISiIP/Lly/R2KhKjDjjgtGR
2463WypyaqqT0VdVBkidKLO43L0H+br0KpqNroROMBZdJ9LamVHCSQA7YIrH
oCLP0xzeRUlCSNoFN8pY8G1NC31OW1lzPAhRVL6oTmpKnnY7GGKsSEv/2pFQ
B5tgR0XJZBez2l1aYcu+6HacFjfrvSBfVEtLKB8UV9apv51CI23GyTkMWtfD
KdLUvS2dTN29M4YtT2iXa/K0w+VF+ttmYAwMbQa43FHNVNdj62cEm+/F4VRK
J+Fbe4Xowe7YZWyTidxRpe4UWINeHkxtEqARuDXSYzZ2gfNzI7bJRLZeZy9j
mIiF8UhLTpDOF5YVg9p8/fo1USc2fZjD6XQVHlSkeKT49ph7xU2uSzdCs7hh
ViHOfCMlKUm/OAxalEEDwNKLiwulT5gudZYKxkwZdAQVycruDudnR4TpZwjf
dKmzNGTm8fExHrsZdE+WC1FgrJkuhaVYfAJ8XCxFT7sW41vyAH4mQ1UXmsBM
zW22E7Bv+2S55OvBbV+sSlE35NYXYinGC+cKFyvMTFu8OrVUAeWyMjwZpBgU
BuxGndkOzx8kw1Q8KfPRkHu5v9jO7JU6DTOCpiZUGoS0pIEvXrygscTml5eX
DFL5mQuw5g09n+kThefTNBOlAAp1Sq/Rd8qoDDXq7LgaZqrQEMsApIH4NihM
7aWq7RSFwSjAnO5GJAfsLkVlpIuoSmnDSVP6UOVKtcFJhhi+pTKoRUuaps1T
y1CYISZkTknIOxVRUTJKCcZJs/RLy3az9MupGKtPy3BbOp9ln4qTypTGNJi2
bMQ+jvlCqeyYfpw0NI+lr6NXCaksWxhW6O5F5WemJe23dwgz9PgcY4SRAhup
A4TUpaLK3kdP4lHLgjPQ2jtNppXqVFhw28PtP43dFpbfLsZiT5VUDG/hD9SF
SI3cTkFMa98TKu4B3qWE52tQZpjhjDJHPfJdvk4djJDUjdHUMN9L7ZS+WDA/
G2jsVkO7asNauCnjbA0oBJHC3PgILKNe3NPeEG0PAeIhxlpUZIwYG7dtHZ1a
TnVhlwUixmpTG6SFNvAW/kBdiBTuLbIdRiHsVnptSrpeg3cpgXIoLdxh19CN
7aBglztiI8qE88nLT46NVbWNmbY9Mw493yhwG+yx0k2tHuFozSSfudCyIx4k
27bxuG2QLkk4ybEw8jgcDofDMRcUs79u60fCpZcVu8bPkY2NR0NzRw7hLEk+
uZFKYkuVf6rmLFU+Dsfi4fYljpkKZ161jWOO8i+GWQtn2jrPUWLFMFNGORyO
bZipM1MMLp8IJhHO6n52RJmPzgXO0jgSksfl7HA04IYyDheOw+FwOEIUswsF
DHRr+aiJAaVlqurGb+X+3EyFszx0lH+qzpoXxgtn2fIpg4gMXeAunJrh8o/A
+VkDXP4RuHDSwuUZgQtnWkSMkZuqePN3XDi1weUfgQsnFXywx+HCmRYRfnrX
xAfvHOXz/5Jqt2k=
"], {{0, 224}, {224, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{115.75390625, Automatic},
ImageSizeRaw->{224, 224},
PlotRange->{{0, 224}, {0, 224}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt1EGOJUcZhVEDE4ZsgV0wZcgUxAKMMIiJkWwkxJSNg1uUsNzqevnyVUZ+
GRnnSN2q7lHW/W/cX//p77//y8+/+uqr73/5w1+///qfv/3uu6//9Ydf/fCP
P377/d/++u03f/7dt//45q/ffPebP/3ih//898/+9+fTz/8BAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe+go+
oO4vd1C3mLnV/WVidXm5m7rRzKRuK/dU95qZ1G3lnupeM5O6rdxT3WtmUreV
e6p7zUzqtnJPda+ZSd1W7qnuNTOp28o91b1mJnVbuae618ykbiv3VPeaOdQ9
5c7qdjOHuqfcWd1u5lD3lDur280c6p5yZ3W7mUPdU+6sbjdzqHvKndXtZg51
T7mzut3Moe4pd1a3mznUPeXO6nYzh7qn3FndbiZQl5SbqwvOBOqScnN1wZlA
XVJuri44E6hLys3VBWcCdUm5ubrgTKAuKTdXF5wJ1CXl5uqCM4G6pNxcXXAm
UJeUm6sLzqXV9WQJdc25tLqeLKGuOZdW15Ml1DXn0up6cnN1wZlAXVJuri44
E6hL+hN1GECgHp6fqMMAAvXwWB5YXT1CVgjWVc/PmzoGIFPPz5s6BiBTz8+b
OgYgU8+P/YHV1SNkhWB19QhZIVhdPUJWCFZXj5AVgtXVI2SFYHX1CFkhWFq9
QJ/UGQCleoE+qTMASvUCmSBYXT1CVghWV4+QFYLV1SNkhWB19QhZIVhdPUJW
CNZVz8+bOgYgU8/PmzoGIFPPj/2B1dUjZIVgdfUIWSFYXT1CVghWV4+QFYLV
1SNkhWB19QhZIVhXPT9v6hiATD0/b+oYgEw9P/YHVlePkBWC1dUjZIVgdfUI
WSFYXT1CVghWV4+QFYLV1SNkhWB19QhZIVhXPT/2B1ZXj5AVgtXVI2SFYHX1
CFkhWF09QlYIVlePkBWC1dUjZIVgdfUIWSFYXT1CVgiWVi+QCYLV1SNkhWB1
9QhZIVhdPUJWCFZXj5AVgtXVI2SFYHX1CFkhWF09QlYIVlePkBWCddXzY39g
dfUIzbFCEoBxhr6v27xBCcA4Q9/Xld9g/Xu/osoKhqoflhXaocoKhqof1tiX
Vf9ypxqaJIxTPx0rdJihScI4t3k14S9yZceGDMeq38dHH0j9+VM6pDlwlPpB
WKHAIc2Bo9QPYveLqL/3nkZUC55U198KXcKIasGT6vpv97/+wBWdUDz4v7rv
Xy58/VG8ObmNrKmuuRW6tJPbyJrqmr+51Mfwnrar3FXd6zeX+hje03aVu6p7
zazq5nIfdZeZVd1c7qBuMXdQt5i51f3lVuo6M6W6ttxKXWemVNeWe6p7zUzq
tnJPda+ZSd1W7q/uOFdXN5T7qzvO1dUNZRV107moupisqG4911L3kRXVreda
6j6yrrr7XEXdRNZVd5+rqJvI6uoXQK/uIBii1dUFBCu0urqAE5PqCKc1n+uo
SzcxqY5wWvO5grpu11Jfwzl+VJ+C89Rdu5b6Gs7xo/oUnKfuWqCOfLc6sFKd
PWeoWzZWne5AdbSnqsNmrLpfY9XpDlRHe6o6bMaq+zVEHWqgjvwMdcaMUjdr
iDrUQB35GeqMGaVu1jHqFC+kPsVYdboMUdfqGHWKF1KfYqw6XYaoa/W6OrkJ
1Cc6Xp0oB6sL9aI6tinVRztYHSeHqav0ojq2KdVHO1gdJ4epq7RDHdWt1Mc8
TB0kB6hLtEMd1a3UxzxMHSQHqEv0lDqke6qveqQ6Sz6krs8jdTYLqU/9UXV+
fEhdn0fqbBZSn/qj6vz4kLo+X1ansqL65h9V58fr6u58WZ3Kiuqbf1SdHy+q
i/NldSpctBjPqJNjt7oyX1anwkWL8Yw6OXarK/O5Og9+oq7DK+rMeEXdGrW5
tLodL6pjY5+6LwpzaXU7XlTHxijasqwRpx+qDoxRtGVZI04/VB0YMEQ9LfvU
aQHHq3dlnzot4Hj1ruxTpwWMUq/Ls+qcgFHqdXlWnRMwUD0wO9RRAUPU07JD
HRUwRD0tO9RRAQPVA/OUOiRgoHpgnlKHBAxUD8wOdVTAEPW07FBHBQxUD8xT
6pCAgeqBeUodEjBQPTBPqUMCxqo3ZludEDBWvTHb6oSAseqN2VYnBIxVb8y2
OiFgrHpjnlXnBIxSr8uz6pyAUep1eVadEzBWvTHb6oSAseqN2VYnBIxVb8y2
OiFgrHpjttUJAWPVG7OtTggYq96YbXVCwFj1xmyrEwLGqjdmW50QMFa9Mdvq
hICx6o3ZVicEjFVvzLY6IWCsemO21QkBY9Ubs61OCBir3phtdULAWPXGbKsT
AsaqN2ZbnRAwVr0x2+qEgLHqjdlWJwSMVW/MtjohYKx6Yx6pswHOUC/NI3U2
wBnqpXmkzgY4Q700j9TZAGeol+aROhtgrHpjttUJAWPVG7OtTggYq96YbXVC
wFj1xmyrEwLGqjdmW50QMFa9MdvqhJZWH/9NHQNj1f16pM5mXfXl31UHw/Hq
Tm2o41lXffl31cFwvLpTG+p41lVf/l11MByv7tSGOp511Zd/Vx0Mx6s7taGO
Z1315d9VB8Px6k69qw6Gi3ajToUj1W3aUMfDRRtSp8KR6jZtqOPh0g2ps+EY
dY821PFw6YbU2XCMukcb6ni4dEPqbPioukHb6oT4pG7BI3U2fFTdoG11QnxS
t2BbnRCvq7uzrU6IT+oWbKsT4kV1cZ5Sh8QndQu21Qnxoro4T6lD4kd1F7bV
CbFDXZan1CHxuboR2+qE2KEuy1PqkPhc3YhtdULsUJflKXVIfK5uxFPqkNhW
d+QpdUh8Wd2Lp9Qhsa3uyFPqkHikbseGOh4eqduxQx0Vj9Tt2FDHwyN1O3ao
o+KRuh1PqUPiC+pS7FBHxYa6IE+pQ+IL6lLsUEfFhrogO9RR8aYuwm51YDyl
rskOdVRLq4+/Wx0YO9Rl2aGOamn18XerA2OHuiz71GmtqL75bnVg7FZXZp86
rRXVN9+tDoxX1K3ZrQ5sIfWpX1Fnxivq1uxWB7aQ+tSvqDPjFXVrXlTHdnP1
eV9RZ8ZH1Q16RZ3ZPdVXfVEdGweoS/SKOrN7qq/6ojo2DlNX6XV1ctOrD/i6
OjkOVhfqdXVy06sP+Lo6OQ5WF+qj6vymVB/to+r8GKKu1QHqCCdQn+gAdYQM
VJfrAHWEE6hPdIA6Qsaq+3WkOssLqU9xmDpIzlC37Eh1lhdSn+IwdZCcp+7a
EHWop6rDHqIOlVPVdRuiDvVUddhD1KFyqrpuZ6gzPlgd51h1umTq6gXqyJ9S
h3SqOmxidQEDdeRPqUM6VR02vbqD1yL5k50ZOJdV1/BaJH+yMwPn4uoyspy6
8lxOXUmWU1eei6qLyRLqmjOHuqfcU91rZlK3lXuqe8186s5yK3WdmVJdW26l
rjMTq8vLxOrycjd1o5lJ3Vbuqe41M6nbyp3V7ebS6nqyhLrmXFpdT9ZS951r
qfvIiurWcy11H1ld/QLI1NWDz9VvgjPULYNH6vfBGeqWwbPqt8LB6kLBbvWj
4WB1oeB19evhQ+r6wPHqV8UjdTvgDPU745G6HdCoX97S6uPDJdQPcWn18eGK
6nd5c/V5YQL1M725+rwwn/rVTqw+HdxZ/b4vpz4ILKd+9JdTHwT4iXoShqhD
BXaoB2OIOlTgYPWoWBVYXT1CVggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADe9V++YGZ+
"], {{0, 386}, {
386, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{124.2109375, Automatic},
ImageSizeRaw->{386, 386},
PlotRange->{{0, 386}, {0, 386}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt08GOHUcZBWADG5a8Am+RLUu2QTxAIkzExkgOEuLpB0/GcjJze7r79u2q
81fX90mJ7JFlV59z/j//+O/v//n7Dx8+/PzHL//7/of//uXz5x/+97c/ffnN
3z/9/K+fPn38x18//efjTx8/f/fjH7788Lvfvfz3/OsnAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAIj68Iv0K4A1H5akHwW84k6huMUjdbNQijuF+vbcqZuF
LHcK9blTqO/eO3W2p/iWnlTZw51GuFN2evBCLeqAw/HKfHKnXKv9PJ2a5InS
qXAO2zimRW4tpHPiHLZxTIvcWkjnxDms4oBzQ2sqHRXnMJV1HfJpKp0f5zCV
dR3yaSqdH48ynlvBTBpJJ8qj0gv61eSf31QkW06UXtCGCT+5hRYx0lN6QRsm
/OQWWsRIT+kFPWSGbzxF0wnRWno+dJIeGg9Jz4dO0kPjIen50El6aDwkPR86
SQ+Nh6TnQyfpofGQ9HzoJD00HpKeD52kh8Zx6e3QT3prHJfeDv2kt8Zx6e3Q
T3prHJfeDqdZr7jnqDhddlpsSg+EEtIzZEN6IISlB8he6aWQlF4fr6TnQFHp
YfJKeg4UlR4mr6TnQFHpYU4tXT7DSE91aunyGUZ6qlNLl88w0lOdSLpqRpUa
aud/NyhYLpeRGm3nfzcoWC6XUWGxPd/QR88GmUHN6XZ71YkaFQRP7vQ8jQqC
J3d6nkYFwVPVO4288IATi4BF406688tbfALsNO7IO7+8xSfAXS4z8iEeCfc6
ZdjGD025U6jPnUJ97hTqc6dQnzuF+twpFOdIoT53CvW5U6jPnUJ9LhTqc6dQ
nzuF+twpFNfhSN0pPMidQn3uFOpzpFBZhwt1p/Agdwr1uVOoz51Cfe4U6nOn
UJ8jheL6HKk7hUe4U6jPnUJ97hTqc6dQnzuF+lwo1OdOoT53CvW5U6jPnUJ9
7hTqc6RQnzvtbzGczdyEOTN3epbbT34vkGMxzpwtBzZz78AmcfvJ7wVyLMaZ
s+XAZvZP6xraRXSKN+8MBkU7qRW99we+/WTlb2v64AvoMhy66raZxd+u/GTl
b2v64AvoMhw6Sa+J5tIT4wTpEdFPemscl94OXaXnxkHp4dBVem4clB4OGend
cZ/0XohJT487pMdCTHp67JVeCiWkZ8i29EYoIT1D1qTXQRXpJbImvQ6qSC+R
Nel1UEt6jyxL74Jy0pNkQXoUFJUeJq+k50BR6WHySnoOpe0P7b0/MG7IDTfH
ndJb6Ced9IJ0JNvSCfFVegj9pJNekI5kWzohvkoP4Q7rz04F+Lj+Sd4lHQ/P
0it45fZhqVgisuGvS2czu3T/z9IZlJMuZFk6lamly3+WzqCcdCHL0qlMLdi4
9ldEelmXjmRquq6sczt7pCOZlJYr69zOHulIpqPiIfSvaVM6krmodSzd+tqU
TmIuOh1On8r2SCcxEYUOp09le6STmIgqB9W6uD3SGUzkQCN6rODQYTWRTmIK
B7rQYAWHTqqJdBLX917suhhC4/vbKx3DFEQ9tOyFvkhnAGNwp1CfO4X63CkM
walCfe4U6nOnMAqnCvW5U6jPnUJ97hSG4E6hPncK9aXu1LXCfu4U6nOnUJ87
hfrcKdTnTqE+dwr1Ze/UqcIe6TN1p7AtfabuFLalz9Sdwrb0mbpT2MWdQn3u
FIrLHqk7hT3SZ+pOYVv6TN0pbEufqTuFbekzdaewLX2m7hS2pc/UncK29Jm6
U9iWPlN3CtscKdTnTqE+dzozTQ2h3QFqvz9NXVXTZrXfmaauqmmz2m9HU1Pp
X7f2T6GpqfSvW/un0NRU+tet/cdpah6RrvX+IJXNSekDCZalr4hs4y/SGYxH
X7PJNv4incGQVDaVbN0v0hkMSWWTyBb9W+kkhqSySWSL/q10EkNS2VSydWv8
MK1NIlv0N+kYRqW1SWSLfpHOYGCKm0S26BfpDAaWrk53naR7fpbOYHiKu7BU
ubfSSQxPcReWKvdWOonh6e7CguW+kU5ieLq7pGCtb6STuA4NXk+q01vpJK5D
g9eT6vRWOonr0ODFpAq9lU7ialR5DcEeF6XzuBpVXkOwx0XpPK5GiRcQKXFF
Oo/L0uboIg3eSsdwcTodWqS+RekkLk6nQ4vUtyidxPWpdVCR4halk5iCZocT
qWxROomJ6Hc4kcoWpZOYjpZHEWnqPekwpqPl+iIdrUjnMSNd15fqaFE6jEmp
u75UR4vSYUxK3cWlCrqVTmJ2Si8oUsqKdB6404oipaxI58Ez1ZcSqWNdOhJ+
ZQBZkfxXvDwpnQoLImPgqdiRpsNgg0mk9E9+RToMNthGSjD5N9JJsM0weoqk
vSKdB3uZR0+RtFek8+A+dtJIKthN6WA4yGxayKa6KB0Jj7KfU2RjXJfOhhOY
0CmyMa5LZ8Oj0gsae0Lp8Dak4+F86U2NN6p0YBvS8dBKellfpWNYlk7lbunA
aCW9rK/SMSxLp3K3dGC0ld7XK6K4VzYxukkPbcO0H76uXSzUlF7chmk/fF27
WCgrPbo7rD973O/aqeMoqCg9QN6VngYVpVfJW+lFUFF6lbyVXgQVpVfJW+lF
UFd6m7NL988Y0judXbp/RpJe61zSbTO89ISvKd0q15Te9fDSBTKF9MyHly6Q
WaSXPqR0aUwtPf9hpItiaun5DyNdFHyVPoVa0m3AsvRlxKSDhyPSd9NbOm84
In03vaXzhkelb+gc6RShn/S1HZHODHpL39wR6cwgzw3CoBwgAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAADd/B+Mi8U7
"], {{0, 312}, {312, 0}}, {0,
255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{121.3046875, Automatic},
ImageSizeRaw->{312, 312},
PlotRange->{{0, 312}, {0, 312}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3UuOHEUUBdACJgyRWAG7YMqQqRELsIWxmBjJRkKsvvAHN2lXdXZl1It4
8TlHAhkLujLvfZcGic8PL/589vvXp9Pp7bfvfvXs+d8/vXnz/J9fvnv3G7++
fvvHq9cvf/v59V8vX7188+OLb9795Pdfffzl/Y/PAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAArMr/1Q4KnD7IfgoYxuma7IeC3l0dju3AvseGYzuww3Dg
kJ3JmA/sMBwoYDhw1I1/qWZBsGU4cNTR1RgOnIuGYz4srng15sPKrAaOuv/b
je2woJDhGBFLsRooED4cI2J6VVdjOEyp9mqMiCkZDhRoPBwLYgJZq7EdxpW7
mq3sJOCA7Llcl50KPCF7ItdlpwJPyJ7IE7LjgS9lb+Kw7TNvX2Hn58/X/sPX
O18QnlT1yIe2zef8aXon4+KDzNMcXHZ1pMk+vbFlt0ea7NObQXaHtJZ9cXPK
bpUWsq9sQtmVUle9s6n0lUeUXTLxqt5JjS8+usSuCdTmMMI/ZXSNWyZWs3sI
/6DRtWyZcO3vIfwTB9WgXCpJuYcaHzqiBv1SSco91PjQ4TQol0rSjyH8AQZS
o1DaSD+G8AcYSI1CaaOrYwh/mJ5FNUh7vd1DjefpVlSJNNb5JYQ/Xm9i46KZ
zi8h/PF6ExsXbQx0CTUetczVhyl7yEpZUVXEEeWcQfiT3/Jqj73mzk/e8mUZ
To3rmuAttq8T8mrbP7yHxLhTjUvr4Y22P+72gdMfgDLhq+n2DC7X9PDjvIdi
SItMBmIZDhQwHChgOHCU1UABq4EChgNHWQ0UMBwoYDVQwHDgKKuBowJXYzis
w2qggNXAUVGrMRzWYTVQxnbgkMDJGBHrqDocC2JWbYZzOSJrYmjth3MpOwM4
Jnsx/zv7L4kxiNyl3CI7IbgiexbHZKcF/8meQqHs2Fha9vnHyE6R5WSffLzs
RJlf9o3XtX3H3JyZSe5VJ8oOnrFl328vHtLIrYNRZB9sv7b55HZEh3KPs3Pn
i+GcjGh5qSc5g+wCSXP6/E+qX1zF/Uf12IEFflCuL5JkWVdPouyWij96OGfD
4Zpml/Pw1W750G7dnwPzSbmT7Qe1HUGJBoEwtNwjyd7Hnh7ygSdlD+VR2cFA
iezdvJedARTKns572RlAie0BGw7cw3agzKnt96Ds14V45gPFDAfKGA6Uqb0d
82FitgNlDAcKGA6UMRwoYztQxnaggNVAGduBMrYDZQwHjqqxGsNhBbYzJRXU
ZjjzUU0btjMTHTVjOHNQXGNRgcs/lxLbk/kEapSoyn0Cn0ClEvW4Q9oTqFGi
KvcJfHSVGlTiPpmPrlKDStwn8wlUKlGPO6Q9gRol6nGfwEdXo0E9PknmE1Bi
ezKfgBIbqxS4zBtTYmOVApd5YxpsrEbgYm9PiY1VClzm7WmwmfCoxZ5IiS3V
SFvmKTTYTHjUYk+kwTbCcxZ7Og02EBuyzHugxwbCQ5Z5LvW1EZuz5NNpsIHw
kMXeAw3WFpuwzDuhx9rCExZ4D5RYW2zCMu+HHiuJDVbaHVJlDYGpSrtPeqwh
KlWB90mV4WIjlXa3VBkuMFJR90ybUaKSFPUQtBklKkk5D0Gn9wvMUMhD0GmU
2CQlPATN3ikwQPGOJarWBcsNie72hOmKZgtEhXZjsKvFO4TYihcRGJpUB6Xo
o8ITWzzPcSn6RrFByXN0ir5FbEqLhzkTXe+ICkeS81H6jthw1sxwVqq/qkYs
i0S3CNVfCs9knehW4ww+qpHD3IlxXv67T/jrT5wVWytfRb13nyMf9i11G6dP
/0hYruwYCLDInTR4zdtlh0GYBneSeDNV3+6olASoZ47jafkWR9V7a3rQ+JDu
OarLL9Ls4Y8KqYZuZd/XlTU9/Pjq7zOElCppLPvKppJdJk1ln9sksmskR/bd
jS27PTJlX9+QskujF9mXOICHoHKbojfZh9m17HIYQPaR9iK7BwaTfbBdyC6B
sWXfb2tnfxdDhOxDbic7aeaUfdcVnX2XoYnsSy90/vyfhTsZC3nydnBYdlRw
3fY4s1dyRWIycNT2bsOHcPp8qmkvCa089u1g/yfPF//ODrBlGgAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEf/AuADuHg=
"], {{0,
275}, {275, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{132.546875, Automatic},
ImageSizeRaw->{275, 275},
PlotRange->{{0, 275}, {0, 275}}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.675779184936159*^9, 3.67577921436946*^9}, {
3.675779354883193*^9, 3.6757793639083357`*^9}}]
}, Open ]],
Cell["Code", "Section",
CellChangeTimes->{{3.549542047850762*^9, 3.549542050840076*^9},
3.549542327097245*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Unicode OCR", "Title",
CellChangeTimes->{{3.676407935020046*^9, 3.676407937114869*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"$path", " ", "=", " ",
RowBox[{"SetDirectory", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\\""}],
"]"}]}], ";"}], "\n",
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\\""}],
"]"}], ";",
RowBox[{"names", "=",
RowBox[{"ToExpression", "[",
RowBox[{
RowBox[{"FileNames", "[", "]"}], "\[LeftDoubleBracket]",
RowBox[{";;",
RowBox[{"-", "2"}]}], "\[RightDoubleBracket]"}], "]"}]}],
";"}]}], "Code",
CellChangeTimes->{{3.6764079397341557`*^9, 3.676407947395095*^9}, {
3.6765083935581093`*^9, 3.676508396790523*^9}, {3.676508491947294*^9,
3.676508492688229*^9}, {3.6765844338941*^9, 3.6765844372389107`*^9}, {
3.67658458010703*^9, 3.67658458261625*^9}, {3.676585247956637*^9,
3.676585250457685*^9}, {3.6765852935165787`*^9, 3.676585294626965*^9}, {
3.676681188738309*^9, 3.6766812143494377`*^9}, {3.6768185634750957`*^9,
3.676818577892343*^9}, {3.676839126404307*^9, 3.676839132213005*^9}}],
Cell[CellGroupData[{
Cell["Existence check", "Chapter",
CellChangeTimes->{{3.6757869410586863`*^9, 3.6757869587695847`*^9}}],
Cell[BoxData[
RowBox[{"path", "=",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\\""}]}]], "Input",
CellChangeTimes->{{3.676415973704598*^9, 3.676415974172077*^9}, {
3.676732544159865*^9, 3.676732551279447*^9}, {3.676839085087179*^9,
3.676839106679696*^9}, 3.676839917558024*^9}],
Cell[BoxData["\"\\""], "Input",
CellChangeTimes->{{3.6768399264313383`*^9, 3.6768399264387007`*^9}}],
Cell[CellGroupData[{
Cell["Check that all images are gif", "Subsection",
CellChangeTimes->{{3.676407831932745*^9, 3.676407836406543*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"files", "=",
RowBox[{"FileNames", "[",
RowBox[{"\"\<*\>\"", ",",
RowBox[{"{", "$path", "}"}], ",", "Infinity"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ext", "=",
RowBox[{"FileExtension", " ", "/@", " ", "files"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"extUnion", "=",
RowBox[{"Union", "@", "ext"}]}]}], "Input",
CellChangeTimes->{{3.676407745308627*^9, 3.676407798582737*^9}, {
3.6764078547069902`*^9, 3.676407883611306*^9}, 3.676407957384157*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"\"\>", ",", "\<\"gif\"\>", ",", "\<\"nb\"\>"}],
"}"}]], "Output",
CellChangeTimes->{{3.676407783623342*^9, 3.67640780742393*^9},
3.676407890019517*^9, 3.6764079641702957`*^9, 3.676584464643306*^9,
3.676585265667306*^9, 3.676681253119858*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Delete ? and blank images", "Subsection",
CellChangeTimes->{{3.676544014526479*^9, 3.676544026437951*^9}, {
3.676681458755261*^9, 3.6766814624152803`*^9}}],
Cell[BoxData[
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{
RowBox[{"delete", "=",
RowBox[{"{", "}"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}]}], "]"}], ";",
RowBox[{"files", "=",
RowBox[{"FileNames", "[", "]"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"FileHash", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], "]"}], "==",
"31954948101503410459035119632005782770"}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], ")"}], ">>>",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\\""}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"file", ",", "files"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"dir", ",", "names"}], "}"}]}], "]"}]}], ",", "dir"}],
"]"}]], "Input",
CellChangeTimes->{
3.676384552294888*^9, 3.676384591308008*^9, 3.676386318777981*^9, {
3.676387526310938*^9, 3.676387527631523*^9}, {3.676387605197139*^9,
3.6763876102347393`*^9}, {3.6763879385872097`*^9, 3.676387940993408*^9}, {
3.6766813482764177`*^9, 3.676681349510198*^9}, 3.6766815104657087`*^9, {
3.676682129969344*^9, 3.676682138783791*^9}, {3.676839147459147*^9,
3.676839160953076*^9}, 3.676839938468493*^9}],
Cell[BoxData[
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{
RowBox[{"delete", "=",
RowBox[{"{", "}"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}]}], "]"}], ";",
RowBox[{"files", "=",
RowBox[{"FileNames", "[", "]"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"FileHash", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], "]"}], "==",
"121651544538873266217131651571226942085"}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], ")"}], ">>>",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\\""}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"file", ",", "files"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"dir", ",", "names"}], "}"}]}], "]"}]}], ",", "dir"}],
"]"}]], "Input",
CellChangeTimes->{
3.676384552294888*^9, 3.676384591308008*^9, 3.676386318777981*^9, {
3.676387526310938*^9, 3.676387527631523*^9}, {3.676387605197139*^9,
3.6763876102347393`*^9}, {3.6763879385872097`*^9, 3.676387940993408*^9}, {
3.676427453772235*^9, 3.6764274538636713`*^9}, 3.6764276145895443`*^9, {
3.676681352197977*^9, 3.676681353582054*^9}, 3.6766815149856586`*^9, {
3.676682097183486*^9, 3.676682097278721*^9}, {3.676682132310042*^9,
3.676682143151093*^9}, 3.6768391791888847`*^9, 3.676839940220894*^9}],
Cell[BoxData[
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{
RowBox[{"delete", "=",
RowBox[{"{", "}"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}]}], "]"}], ";",
RowBox[{"files", "=",
RowBox[{"FileNames", "[", "]"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"FileHash", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], "]"}], "==",
"199175634088064760242886431725868164404"}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], ")"}], ">>>",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\\""}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"file", ",", "files"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"dir", ",", "names"}], "}"}]}], "]"}]}], ",", "dir"}],
"]"}]], "Input",
CellChangeTimes->{
3.676384552294888*^9, 3.676384591308008*^9, 3.676386318777981*^9, {
3.676387526310938*^9, 3.676387527631523*^9}, {3.676387605197139*^9,
3.6763876102347393`*^9}, {3.6763879385872097`*^9, 3.676387940993408*^9}, {
3.676427453772235*^9, 3.6764274538636713`*^9}, 3.6764276145895443`*^9, {
3.676681352197977*^9, 3.676681353582054*^9}, 3.6766815149856586`*^9, {
3.676682097183486*^9, 3.676682097278721*^9}, {3.676682132310042*^9,
3.676682143151093*^9}, 3.676742373953953*^9, 3.6768391844954453`*^9,
3.6768399425804234`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Delete empty directories", "Subsection",
CellChangeTimes->{{3.676681639511286*^9, 3.676681647040172*^9}}],
Cell[BoxData[
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{
RowBox[{"delete", "=",
RowBox[{"{", "}"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "dir", "]"}]}], "]"}], ";",
RowBox[{"files", "=",
RowBox[{"FileNames", "[", "]"}]}], ";",
RowBox[{"Do", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"files", "\[Equal]",
RowBox[{"{", "\"\\"", "}"}]}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "dir", "]"}]}], ")"}], ">>>",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\\""}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"file", ",", "files"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"dir", ",", "names"}], "}"}]}], "]"}]}], ",", "dir"}],
"]"}]], "Input",
CellChangeTimes->{{3.676311830530348*^9, 3.6763118351246758`*^9}, {
3.676311901669839*^9, 3.6763119032345343`*^9}, {3.676311935079069*^9,
3.676312059750304*^9}, {3.676312132266378*^9, 3.6763123981947527`*^9}, {
3.676312522007324*^9, 3.676312523434593*^9}, {3.676312713819368*^9,
3.676312731269228*^9}, {3.676312882127842*^9, 3.676312913349131*^9}, {
3.676312954459*^9, 3.6763130011490726`*^9}, {3.6763130993738203`*^9,
3.676313118785036*^9}, {3.67631849655669*^9, 3.6763185440899973`*^9}, {
3.676318575123149*^9, 3.676318617486806*^9}, {3.676330885200863*^9,
3.676330953445385*^9}, {3.676331050975334*^9, 3.67633106767052*^9}, {
3.676331118254964*^9, 3.6763311199183483`*^9}, {3.676331329108068*^9,
3.676331333921699*^9}, {3.676331368447164*^9, 3.6763313904831743`*^9},
3.67633142172158*^9, {3.67638456460159*^9, 3.6763845793798847`*^9}, {
3.676387515531508*^9, 3.676387518179798*^9}, {3.676387563758379*^9,
3.676387578956356*^9}, {3.676387763472739*^9, 3.676387763737421*^9}, {
3.676387953410665*^9, 3.676387956118226*^9}, {3.676388037758922*^9,
3.6763880419767017`*^9}, {3.676388081625938*^9, 3.676388083638629*^9}, {
3.6766813416111193`*^9, 3.676681343130351*^9}, {3.676681662397978*^9,
3.676681667359603*^9}, {3.676681849272402*^9, 3.676681860396204*^9}, {
3.676681899795745*^9, 3.676681900712817*^9}, 3.676839944081705*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Which unicode characters have no images", "Subsection",
CellChangeTimes->{{3.676407831932745*^9, 3.676407836406543*^9}, {
3.676407964320409*^9, 3.6764079737703133`*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"files", "=",
RowBox[{"FileNames", "[",
RowBox[{"\"\<*.gif\>\"", ",",
RowBox[{"{", "$path", "}"}], ",", "Infinity"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ext", "=",
RowBox[{
RowBox[{
RowBox[{"FileNameTake", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "2"}]}], "}"}]}], "]"}], "&"}], " ", "/@", " ",
"files"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"extUnion", "=",
RowBox[{"ToExpression", " ", "/@", " ",
RowBox[{"Union", "@", "ext"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"totalChars", "=",
RowBox[{"Range", "[",
RowBox[{"0", ",", "65535"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"complement", "=",
RowBox[{"Complement", "[",
RowBox[{"totalChars", ",", "extUnion"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.676407745308627*^9, 3.676407798582737*^9}, {
3.6764078547069902`*^9, 3.676407883611306*^9}, {3.676407957384157*^9,
3.676407982789077*^9}, {3.6764080194106283`*^9, 3.676408216002735*^9}, {
3.676408249777615*^9, 3.6764082647715273`*^9}, {3.676415206724575*^9,
3.676415216189801*^9}, {3.676415252415134*^9, 3.676415258402935*^9},
3.67658451832555*^9}],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{"x", ">>>",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\\""}]}],
",",
RowBox[{"{",
RowBox[{"x", ",", "complement"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6764154270116796`*^9, 3.676415453701274*^9}, {
3.676681699438716*^9, 3.676681748122829*^9}, {3.676681807490841*^9,
3.676681812455311*^9}, 3.676683653381646*^9, 3.6768399471231527`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Fill missing glyphs with the ones from Mathematica", "Subsection",
CellChangeTimes->{{3.676407831932745*^9, 3.676407836406543*^9}, {
3.676407964320409*^9, 3.6764079737703133`*^9}, {3.6764157460050707`*^9,
3.676415768753228*^9}, 3.676585775886704*^9}],
Cell[BoxData[{
RowBox[{
RowBox[{"temp", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"PrintTemporary", "[",
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Dynamic", "[", "temp", "]"}], ",",
RowBox[{"ProgressIndicator", "[",
RowBox[{
RowBox[{"Dynamic", "[", "temp", "]"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Length", "[", "complement", "]"}]}], "}"}]}], "]"}]}],
"}"}], "]"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"temp", "=", "char"}], ";", "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "char", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"CharacterName", "[",
RowBox[{
RowBox[{"FromCharacterCode", "[",
RowBox[{
RowBox[{"{", "char", "}"}], ",", "\"\\""}], "]"}], ",",
"\"\\""}], "]"}], "]"}], "<>", "\"\<.gif\>\""}], ",",
RowBox[{"Rasterize", "[",
RowBox[{
RowBox[{"FromCharacterCode", "[",
RowBox[{
RowBox[{"{", "char", "}"}], ",", "\"\\""}], "]"}], ",",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"100", ",", "100"}], "}"}]}], ",",
RowBox[{"RasterSize", "\[Rule]", " ", "500"}], ",",
RowBox[{"ImageResolution", "\[Rule]", "1000"}]}], "]"}]}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"char", ",", "complement"}], "}"}]}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.676415875626418*^9, 3.67641595249059*^9}, {
3.676415993674633*^9, 3.676416125689501*^9}, {3.676416800037919*^9,
3.6764168492953863`*^9}, {3.676418080641842*^9, 3.676418090729116*^9}, {
3.6764181232391567`*^9, 3.6764181442004747`*^9}, {3.676581180464745*^9,
3.6765811813676767`*^9}, {3.676581230756522*^9, 3.676581236208645*^9}, {
3.676584357857736*^9, 3.676584368429529*^9}, {3.676682458356982*^9,
3.6766824595350437`*^9}, {3.676684211552747*^9, 3.6766842142801743`*^9}, {
3.676729161640088*^9, 3.676729205872666*^9}, {3.676732403557374*^9,
3.676732493122773*^9}, {3.676732585458026*^9, 3.676732589646427*^9}},
CellID->153676768]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Image Manipulation", "Chapter",
CellChangeTimes->{{3.6757869410586863`*^9, 3.6757869587695847`*^9}, {
3.6760509022700233`*^9, 3.676050909710124*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"fastMappings", " ", "=", " ",
RowBox[{"Compile", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"lower", ",", " ", "_Integer", ",", " ", "3"}], "}"}], ",",
" ",
RowBox[{"{",
RowBox[{"higher", ",", " ", "_Integer", ",", " ", "3"}], "}"}], ",",
" ",
RowBox[{"{",
RowBox[{"lowhigh", ",", " ", "_Integer", ",", " ", "3"}], "}"}], ",",
" ", "\n", "\t\t\t",
RowBox[{"{",
RowBox[{"highlow", ",", " ", "_Integer", ",", " ", "3"}], "}"}], ",",
" ",
RowBox[{"{",
RowBox[{"imageData", ",", " ", "_Real", ",", " ", "2"}], "}"}], ",",
" ",
RowBox[{"{",
RowBox[{"dim1", ",", "_Integer"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"dim2", ",", "_Integer"}], "}"}]}], "}"}], ",", " ",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"topLeft", ",", " ", "bottomLeft", ",", " ", "bottomRight", ",", " ",
"topRight"}], "}"}], ",", "\[IndentingNewLine]", "\t\t\t\t\t",
RowBox[{
RowBox[{"topLeft", " ", "=", " ",
RowBox[{"Map", "[", "\n", "\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{"If", "[", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim1"}], " ", "&&", " ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim2"}]}], ",", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{"imageData", "[",
RowBox[{"[",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", " ",
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], ",", " ",
"1.0"}], "\n", "\t\t\t\t\t\t\t\t", "]"}], "&"}], ",", "\n",
"\t\t\t\t\t\t\t\t", "lower", ",", " ",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";", "\n", "\t\t\t\t\t",
RowBox[{"bottomLeft", " ", "=", " ",
RowBox[{"Map", "[", "\n", "\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{"If", "[", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim1"}], " ", "&&", " ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim2"}]}], ",", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{"imageData", "[",
RowBox[{"[",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", " ",
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], ",", " ",
"1.0"}], "\n", "\t\t\t\t\t\t\t\t", "]"}], "&"}], ",", "\n",
"\t\t\t\t\t\t\t\t", "lowhigh", ",", " ",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";", "\t\t\t\t\t\t\t\t", "\n",
"\t\t\t\t\t",
RowBox[{"bottomRight", " ", "=", " ",
RowBox[{"Map", "[", "\n", "\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{"If", "[", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim1"}], " ", "&&", " ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim2"}]}], ",", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{"imageData", "[",
RowBox[{"[",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", " ",
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], ",", " ",
"1.0"}], "\n", "\t\t\t\t\t\t\t\t", "]"}], "&"}], ",", "\n",
"\t\t\t\t\t\t\t\t", "higher", ",", " ",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";", "\n", "\t\t\t\t\t",
RowBox[{"topRight", " ", "=", " ",
RowBox[{"Map", "[", "\n", "\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{"If", "[", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim1"}], " ", "&&", " ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", ">", " ", "0"}], " ", "&&",
" ",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", "\[LessEqual]", " ",
"dim2"}]}], ",", "\n", "\t\t\t\t\t\t\t\t\t",
RowBox[{"imageData", "[",
RowBox[{"[",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", " ",
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], ",", " ",
"1.0"}], "\n", "\t\t\t\t\t\t\t\t", "]"}], "&"}], ",", "\n",
"\t\t\t\t\t\t\t\t", "highlow", ",", " ",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";", "\t\t\t\t\t\t\t\t",
"\[IndentingNewLine]", "\t\t\t\t",
RowBox[{"{",
RowBox[{
"topLeft", ",", " ", "bottomLeft", ",", " ", "bottomRight", " ", ",",
" ", "topRight"}], "}"}]}]}], "\[IndentingNewLine]", "\t\t\t",
"]"}]}], "\n", "\t\t", "]"}], "\t"}]], "Code",
CellChangeTimes->{{3.6750890695175743`*^9, 3.675089231710751*^9}, {
3.6750894755757847`*^9, 3.675089478157879*^9}, {3.675090121344606*^9,
3.6750902061204*^9}, {3.675090259833928*^9, 3.67509027265314*^9}, {
3.675090318271873*^9, 3.6750903698545017`*^9}, {3.67509040418324*^9,
3.675090415942938*^9}, {3.675090696727262*^9, 3.675090698252989*^9}, {
3.675090740533146*^9, 3.6750908348675823`*^9}, {3.67509093085541*^9,
3.675090955582831*^9}, {3.675091008504024*^9, 3.675091155766962*^9}, {
3.675097147264889*^9, 3.6750971490549593`*^9}, {3.675097305154751*^9,
3.675097307511965*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["CompiledFunction",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False},
PanelBox[
PaneSelectorBox[{False->GridBox[{
{
PaneBox[
ButtonBox[
DynamicBox[FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"],
ImageSizeCache->{12., {0., 12.}}],
Appearance->None,
ButtonFunction:>(Typeset`open$$ = True),
Evaluator->Automatic,
Method->"Preemptive"],
Alignment->{Center, Center},
ImageSize->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
GraphicsBox[
{Thickness[0.038461538461538464`],
{FaceForm[{GrayLevel[0.93], Opacity[1.]}],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, {{{25.499999999999996`,
2.5}, {25.499999999999996`, 1.3953100000000003`}, {
24.604699999999998`, 0.49999999999999994`}, {23.5,
0.49999999999999994`}, {2.5, 0.49999999999999994`}, {
1.3953100000000003`, 0.49999999999999994`}, {
0.49999999999999994`, 1.3953100000000003`}, {
0.49999999999999994`, 2.5}, {0.49999999999999994`, 23.5}, {
0.49999999999999994`, 24.604699999999998`}, {1.3953100000000003`,
25.499999999999996`}, {2.5, 25.499999999999996`}, {23.5,
25.499999999999996`}, {24.604699999999998`,
25.499999999999996`}, {25.499999999999996`,
24.604699999999998`}, {25.499999999999996`, 23.5}, {
25.499999999999996`, 2.5}}}]},
{FaceForm[{RGBColor[0.5, 0.5, 0.5], Opacity[1.]}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}}}, {{{20.5426,
19.116799999999998`}, {16.3832, 21.876199999999997`}, {16.3832,
20.021499999999996`}, {6.930469999999999, 20.021499999999996`}, {
6.930469999999999, 18.212100000000003`}, {16.3832,
18.212100000000003`}, {16.3832, 16.357399999999995`}, {20.5426,
19.116799999999998`}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}}}, {{{5.30508, 13.8391}, {9.46445,
11.079700000000003`}, {9.46445, 12.933999999999997`}, {
18.917199999999998`, 12.933999999999997`}, {18.917199999999998`,
14.7438}, {9.46445, 14.7438}, {9.46445, 16.598}, {5.30508,
13.8391}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {
0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIRIGYC4r9qIkoPPog5zJd34+ifoeBwf6HGBfU8aYe0
2dKXhaMEHT77F2xc1CQH52elHtL/aqrg0KrArnpmjpRDvTCXYEG9gsOOYKuI
/6tlHZ5WFpRfO4qQn3ww8NOrXYpw/fNmfE3SCFCG8z8EiLwQ7lSF2w82/44y
nM937b/lmXNKDnK7FuxLZZFwMDfq/3NwgpKDccaL+Q9miDok9Mnt3x6k5FDt
mbylT0ECwk9QhOuXWfO/eIajPCq/WNYh5kh50jV+CYc1eV/nfGGShZsXte2a
OGevDNy8ZqG0W/9KpeD60cMLAIwUgfU=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}}}, {{{12.82453, 5.289294374999999}, {
11.960858124999998`, 8.29796625}, {11.080858124999999`,
8.29796625}, {12.417186249999999`, 4.337966249999999}, {
13.193201874999998`, 4.337966249999999}, {14.540701874999998`,
8.29796625}, {13.688201874999999`, 8.29796625}, {12.82453,
5.289294374999999}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {
0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIpIGYC4qwFP+fsFjB0WFcz7fnBvSIOLFaTza6GGTjM
l3fj6J+h4GC9PHLBXXc9DH7abOnLwlGCDtPNZKaxndfH4Is8/uOrISAD53uI
GTRGxyP4O4KtIv6fR/BbFdhVz8TIOqj9FNyfdEbfIejt5Y8zXiL4h7TunbCJ
koPzweYvkXP4mfT+6PSlBnD7n25Z/mROiSGcr7S/rqPX1AiuHsaHmQfjw+zz
lubzZjYxgrsHxoe5F8aH+QfGn/B91VROQQQfZr/Ei1viF75j8mHh6eiSdevo
cUM4Hz0+AG0eosQ=
"]]}},
AspectRatio->1,
Axes->False,
Background->GrayLevel[0.93],
Frame->True,
FrameStyle->Directive[
Thickness[Tiny],
GrayLevel[0.7]],
FrameTicks->None,
ImageSize->{Automatic,
Dynamic[
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification]), ImageSizeCache -> {45., {0., 9.}}]}],
GridBox[{
{
RowBox[{
TagBox["\<\"Argument count: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["7",
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Argument types: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
StyleBox[
PaneBox[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Real", ",", "2"}], "}"}], ",", "_Integer", ",",
"_Integer"}], "}"}],
BaselinePosition->Baseline,
ContentPadding->False,
FrameMargins->0,
ImageSize->{{1, 300}, Automatic},
ScrollPosition->{0., 0.},
StripOnInput->True],
LineBreakWithin->False],
"SummaryItem"]}]}
},
AutoDelete->False,
BaseStyle->{
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}
},
AutoDelete->False,
BaselinePosition->{1, 1},
GridBoxAlignment->{"Rows" -> {{Top}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True->
GridBox[{
{
PaneBox[
ButtonBox[
DynamicBox[FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"]],
Appearance->None,
ButtonFunction:>(Typeset`open$$ = False),
Evaluator->Automatic,
Method->"Preemptive"],
Alignment->{Center, Center},
ImageSize->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
GraphicsBox[
{Thickness[0.038461538461538464`],
{FaceForm[{GrayLevel[0.93], Opacity[1.]}],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, {{{25.499999999999996`,
2.5}, {25.499999999999996`, 1.3953100000000003`}, {
24.604699999999998`, 0.49999999999999994`}, {23.5,
0.49999999999999994`}, {2.5, 0.49999999999999994`}, {
1.3953100000000003`, 0.49999999999999994`}, {
0.49999999999999994`, 1.3953100000000003`}, {
0.49999999999999994`, 2.5}, {0.49999999999999994`, 23.5}, {
0.49999999999999994`, 24.604699999999998`}, {1.3953100000000003`,
25.499999999999996`}, {2.5, 25.499999999999996`}, {23.5,
25.499999999999996`}, {24.604699999999998`,
25.499999999999996`}, {25.499999999999996`,
24.604699999999998`}, {25.499999999999996`, 23.5}, {
25.499999999999996`, 2.5}}}]},
{FaceForm[{RGBColor[0.5, 0.5, 0.5], Opacity[1.]}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}}}, {{{20.5426,
19.116799999999998`}, {16.3832, 21.876199999999997`}, {16.3832,
20.021499999999996`}, {6.930469999999999, 20.021499999999996`}, {
6.930469999999999, 18.212100000000003`}, {16.3832,
18.212100000000003`}, {16.3832, 16.357399999999995`}, {20.5426,
19.116799999999998`}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}}}, {{{5.30508, 13.8391}, {9.46445,
11.079700000000003`}, {9.46445, 12.933999999999997`}, {
18.917199999999998`, 12.933999999999997`}, {18.917199999999998`,
14.7438}, {9.46445, 14.7438}, {9.46445, 16.598}, {5.30508,
13.8391}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {
0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIRIGYC4r9qIkoPPog5zJd34+ifoeBwf6HGBfU8aYe0
2dKXhaMEHT77F2xc1CQH52elHtL/aqrg0KrArnpmjpRDvTCXYEG9gsOOYKuI
/6tlHZ5WFpRfO4qQn3ww8NOrXYpw/fNmfE3SCFCG8z8EiLwQ7lSF2w82/44y
nM937b/lmXNKDnK7FuxLZZFwMDfq/3NwgpKDccaL+Q9miDok9Mnt3x6k5FDt
mbylT0ECwk9QhOuXWfO/eIajPCq/WNYh5kh50jV+CYc1eV/nfGGShZsXte2a
OGevDNy8ZqG0W/9KpeD60cMLAIwUgfU=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}}}, {{{12.82453, 5.289294374999999}, {
11.960858124999998`, 8.29796625}, {11.080858124999999`,
8.29796625}, {12.417186249999999`, 4.337966249999999}, {
13.193201874999998`, 4.337966249999999}, {14.540701874999998`,
8.29796625}, {13.688201874999999`, 8.29796625}, {12.82453,
5.289294374999999}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {
0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIpIGYC4qwFP+fsFjB0WFcz7fnBvSIOLFaTza6GGTjM
l3fj6J+h4GC9PHLBXXc9DH7abOnLwlGCDtPNZKaxndfH4Is8/uOrISAD53uI
GTRGxyP4O4KtIv6fR/BbFdhVz8TIOqj9FNyfdEbfIejt5Y8zXiL4h7TunbCJ
koPzweYvkXP4mfT+6PSlBnD7n25Z/mROiSGcr7S/rqPX1AiuHsaHmQfjw+zz
lubzZjYxgrsHxoe5F8aH+QfGn/B91VROQQQfZr/Ei1viF75j8mHh6eiSdevo
cUM4Hz0+AG0eosQ=
"]]}},
AspectRatio->1,
Axes->False,
Background->GrayLevel[0.93],
Frame->True,
FrameStyle->Directive[
Thickness[Tiny],
GrayLevel[0.7]],
FrameTicks->None,
ImageSize->{Automatic,
Dynamic[
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification]), ImageSizeCache -> {45., {0., 9.}}]}],
GridBox[{
{
RowBox[{
TagBox["\<\"Argument count: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox["7",
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Argument types: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
PaneBox[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Integer", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"_Real", ",", "2"}], "}"}], ",", "_Integer", ",",
"_Integer"}], "}"}],
BaselinePosition->Baseline,
ContentPadding->False,
FrameMargins->0,
ImageSize->{{1, 500}, Automatic},
StripOnInput->True],
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Variables: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{
"lower", ",", "higher", ",", "lowhigh", ",", "highlow", ",",
"imageData", ",", "dim1", ",", "dim2"}], "}"}],
"SummaryItem"]}]},
{
RowBox[{
TagBox["\<\"Expression: \"\>",
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
PaneBox[
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"topLeft", ",", "bottomLeft", ",", "bottomRight", ",",
"topRight"}], "}"}], ",",
RowBox[{
RowBox[{"topLeft", "=",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim1"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim2"}]}],
",",
RowBox[{"imageData", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ",",
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], "\[RightDoubleBracket]"}],
",", "1.`"}], "]"}], "&"}], ",", "lower", ",",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";",
RowBox[{"bottomLeft", "=",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim1"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim2"}]}],
",",
RowBox[{"imageData", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ",",
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], "\[RightDoubleBracket]"}],
",", "1.`"}], "]"}], "&"}], ",", "lowhigh", ",",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";",
RowBox[{"bottomRight", "=",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim1"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim2"}]}],
",",
RowBox[{"imageData", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ",",
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], "\[RightDoubleBracket]"}],
",", "1.`"}], "]"}], "&"}], ",", "higher", ",",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";",
RowBox[{"topRight", "=",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim1"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[LessEqual]", "dim2"}]}],
",",
RowBox[{"imageData", "\[LeftDoubleBracket]",
RowBox[{
RowBox[{
"#1", "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], ",",
RowBox[{
"#1", "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], "\[RightDoubleBracket]"}],
",", "1.`"}], "]"}], "&"}], ",", "highlow", ",",
RowBox[{"{", "2", "}"}]}], "]"}]}], ";",
RowBox[{"{",
RowBox[{
"topLeft", ",", "bottomLeft", ",", "bottomRight", ",",
"topRight"}], "}"}]}]}], "]"}],
BaselinePosition->Baseline,
ContentPadding->False,
FrameMargins->0,
ImageSize->{{1, 500}, Automatic},
StripOnInput->True],
"SummaryItem"]}]}
},
AutoDelete->False,
BaseStyle->{
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}
},
AutoDelete->False,
BaselinePosition->{1, 1},
GridBoxAlignment->{"Rows" -> {{Top}}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, Dynamic[
Typeset`open$$],
ImageSize->Automatic],
BaselinePosition->Baseline],
DynamicModuleValues:>{}], "]"}],
CompiledFunction[{10, 11., 5468}, {{
Blank[Integer], 3}, {
Blank[Integer], 3}, {
Blank[Integer], 3}, {
Blank[Integer], 3}, {
Blank[Real], 2},
Blank[Integer],
Blank[Integer]}, {{2, 3, 0}, {2, 3, 1}, {2, 3, 2}, {2, 3, 3}, {3, 2, 4}, {
2, 0, 0}, {2, 0, 1}, {3, 3,
9}}, {{False, {1, 0, 4}}, {0, {2, 0, 13}}, {1., {3, 0, 1}}, {
2, {2, 0, 14}}, {1, {2, 0, 3}}}, {6, 17, 4, 0,
10}, {{33, 0, 6}, {38, 0, 0, 3, 2, 5}, {33, 5, 9}, {6, 13, 12}, {35, 6, 9,
3, 5}, {6, 13, 10}, {3, 38}, {6, 13, 11}, {3, 35}, {37, 0, 10, 11, 0,
6}, {38, 6, 0, 3, 0, 15}, {25, 13, 15, 1}, {2, 1, 20}, {37, 0, 10, 11, 0,
6}, {38, 6, 0, 3, 0, 15}, {26, 15, 0, 0}, {2, 0, 13}, {37, 0, 10, 11, 0,
6}, {38, 6, 0, 14, 0, 15}, {25, 13, 15, 2}, {2, 2, 6}, {37, 0, 10, 11, 0,
6}, {38, 6, 0, 14, 0, 15}, {26, 15, 1, 5}, {5, 5, 3}, {3, 2}, {5, 4, 3}, {
5, 3, 2}, {3, 2}, {5, 4, 2}, {5, 2, 0}, {3, 2}, {5, 4, 0}, {2, 0, 8}, {37,
0, 10, 11, 0, 6}, {38, 6, 0, 3, 0, 15}, {37, 0, 10, 11, 0, 6}, {38, 6, 0,
14, 0, 16}, {38, 4, 0, 15, 0, 16, 0, 0}, {7, 0, 3}, {3, 2}, {7, 1, 3}, {
36, 12, 3, 3, 5}, {4, 11, 9, -34}, {4, 10, 6, -37}, {33, 2, 4}, {38, 2, 0,
3, 2, 6}, {33, 6, 8}, {6, 13, 9}, {35, 4, 8, 3, 6}, {6, 13, 12}, {3,
38}, {6, 13, 6}, {3, 35}, {37, 2, 12, 6, 0, 7}, {38, 7, 0, 3, 0, 15}, {25,
13, 15, 1}, {2, 1, 20}, {37, 2, 12, 6, 0, 7}, {38, 7, 0, 3, 0, 15}, {26,
15, 0, 0}, {2, 0, 13}, {37, 2, 12, 6, 0, 7}, {38, 7, 0, 14, 0, 15}, {25,
13, 15, 2}, {2, 2, 6}, {37, 2, 12, 6, 0, 7}, {38, 7, 0, 14, 0, 15}, {26,
15, 1, 5}, {5, 5, 3}, {3, 2}, {5, 4, 3}, {5, 3, 2}, {3, 2}, {5, 4, 2}, {5,
2, 0}, {3, 2}, {5, 4, 0}, {2, 0, 8}, {37, 2, 12, 6, 0, 7}, {38, 7, 0, 3,
0, 15}, {37, 2, 12, 6, 0, 7}, {38, 7, 0, 14, 0, 16}, {38, 4, 0, 15, 0, 16,
0, 2}, {7, 2, 0}, {3, 2}, {7, 1, 0}, {36, 9, 0, 3, 6}, {4, 6, 8, -34}, {
4, 12, 4, -37}, {33, 1, 11}, {38, 1, 0, 3, 2, 7}, {33, 7, 7}, {6, 13,
8}, {35, 11, 7, 3, 7}, {6, 13, 9}, {3, 38}, {6, 13, 4}, {3, 35}, {37, 1,
9, 4, 0, 8}, {38, 8, 0, 3, 0, 15}, {25, 13, 15, 1}, {2, 1, 20}, {37, 1, 9,
4, 0, 8}, {38, 8, 0, 3, 0, 15}, {26, 15, 0, 0}, {2, 0, 13}, {37, 1, 9, 4,
0, 8}, {38, 8, 0, 14, 0, 15}, {25, 13, 15, 2}, {2, 2, 6}, {37, 1, 9, 4,
0, 8}, {38, 8, 0, 14, 0, 15}, {26, 15, 1, 5}, {5, 5, 3}, {3, 2}, {5, 4,
3}, {5, 3, 2}, {3, 2}, {5, 4, 2}, {5, 2, 0}, {3, 2}, {5, 4, 0}, {2, 0,
8}, {37, 1, 9, 4, 0, 8}, {38, 8, 0, 3, 0, 15}, {37, 1, 9, 4, 0, 8}, {38,
8, 0, 14, 0, 16}, {38, 4, 0, 15, 0, 16, 0, 3}, {7, 3, 2}, {3, 2}, {7, 1,
2}, {36, 8, 2, 3, 7}, {4, 4, 7, -34}, {4, 9, 11, -37}, {33, 3, 6}, {38, 3,
0, 3, 2, 8}, {33, 8, 5}, {6, 13, 7}, {35, 6, 5, 3, 8}, {6, 13, 8}, {3,
38}, {6, 13, 11}, {3, 35}, {37, 3, 8, 11, 0, 9}, {38, 9, 0, 3, 0, 15}, {
25, 13, 15, 1}, {2, 1, 20}, {37, 3, 8, 11, 0, 9}, {38, 9, 0, 3, 0, 15}, {
26, 15, 0, 0}, {2, 0, 13}, {37, 3, 8, 11, 0, 9}, {38, 9, 0, 14, 0, 15}, {
25, 13, 15, 2}, {2, 2, 6}, {37, 3, 8, 11, 0, 9}, {38, 9, 0, 14, 0, 15}, {
26, 15, 1, 5}, {5, 5, 3}, {3, 2}, {5, 4, 3}, {5, 3, 2}, {3, 2}, {5, 4,
2}, {5, 2, 0}, {3, 2}, {5, 4, 0}, {2, 0, 8}, {37, 3, 8, 11, 0, 9}, {38, 9,
0, 3, 0, 15}, {37, 3, 8, 11, 0, 9}, {38, 9, 0, 14, 0, 16}, {38, 4, 0, 15,
0, 16, 0, 0}, {7, 0, 3}, {3, 2}, {7, 1, 3}, {36, 7, 3, 3, 8}, {4, 11,
5, -34}, {4, 8, 6, -37}, {34, 1, 4, 5, 6, 7, 8, 0, 9}, {1}},
Function[{$CellContext`lower, $CellContext`higher, $CellContext`lowhigh, \
$CellContext`highlow, $CellContext`imageData, $CellContext`dim1, \
$CellContext`dim2},
Module[{$CellContext`topLeft, $CellContext`bottomLeft, \
$CellContext`bottomRight, $CellContext`topRight}, $CellContext`topLeft =
Map[If[
And[
Part[#, 1] > 0, Part[#, 1] <= $CellContext`dim1, Part[#, 2] > 0,
Part[#, 2] <= $CellContext`dim2],
Part[$CellContext`imageData,
Part[#, 1],
Part[#, 2]], 1.]& , $CellContext`lower, {
2}]; $CellContext`bottomLeft = Map[If[
And[
Part[#, 1] > 0, Part[#, 1] <= $CellContext`dim1, Part[#, 2] > 0,
Part[#, 2] <= $CellContext`dim2],
Part[$CellContext`imageData,
Part[#, 1],
Part[#, 2]], 1.]& , $CellContext`lowhigh, {
2}]; $CellContext`bottomRight = Map[If[
And[
Part[#, 1] > 0, Part[#, 1] <= $CellContext`dim1, Part[#, 2] > 0,
Part[#, 2] <= $CellContext`dim2],
Part[$CellContext`imageData,
Part[#, 1],
Part[#, 2]], 1.]& , $CellContext`higher, {
2}]; $CellContext`topRight = Map[If[
And[
Part[#, 1] > 0, Part[#, 1] <= $CellContext`dim1, Part[#, 2] > 0,
Part[#, 2] <= $CellContext`dim2],
Part[$CellContext`imageData,
Part[#, 1],
Part[#, 2]], 1.]& , $CellContext`highlow, {
2}]; {$CellContext`topLeft, $CellContext`bottomLeft, \
$CellContext`bottomRight, $CellContext`topRight}]], Evaluate],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{
3.676133780360565*^9, {3.67615033102389*^9, 3.676150331173314*^9},
3.67621666126479*^9, 3.6762980195552807`*^9, 3.6763096536853113`*^9,
3.676398785383396*^9, 3.676406028767366*^9, 3.676508041569364*^9,
3.676543700323773*^9, 3.676572636713204*^9, 3.676584695095916*^9, {
3.676627537260229*^9, 3.676627537409787*^9}, 3.676681197219441*^9,
3.6767323499354753`*^9, 3.676733028761252*^9, 3.676764595027857*^9,
3.676818415843286*^9, 3.6768245740911303`*^9, 3.6768391114553957`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"ElasticDeformation", "[",
RowBox[{"image_Image", ",", " ", "alpha_", ",", " ", "sigma_"}], "]"}],
" ", ":=", " ",
RowBox[{"Module", "[", "\n", "\t",
RowBox[{
RowBox[{"{", "\n", "\t\t",
RowBox[{
"imageData", ",", " ", "imgDim", ",", " ", "xfield", ",", " ", "yfield",
",", " ", "xConvolvedField", ",", " ", "yConvolvedField", ",", " ",
"\n", "\t\t", "imageCoords", ",", " ", "disp", ",", " ", "higher", ",",
" ", "lower", ",", " ", "fields", ",", " ", "newposition", ",", " ",
"newpos", ",", " ", "lowhigh", ",", " ", "highlow", ",", " ",
"imageValue", ",", "\n", "\t\t", "topLeft", ",", " ", "bottomRight",
",", " ", "bottomLeft", ",", " ", "topRight", ",", " ",
"xInterpolationTop", ",", " ", "xInterpolationBottom"}], "\n", "\t",
"}"}], "\n", "\t", ",", "\n", "\t",
RowBox[{
RowBox[{"imageData", " ", "=", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"ImageColorSpace", "@", "image"}], " ", "=!=", " ",
"\"\\""}], ",", " ", "\n", "\t\t",
RowBox[{"Transpose", "@",
RowBox[{"ImageData", "@",
RowBox[{"ColorConvert", "[",
RowBox[{
RowBox[{"RemoveAlphaChannel", "[",
RowBox[{"image", ",", " ", "White"}], "]"}], ",", " ",
"\"\\""}], "]"}]}]}], ",", "\n", "\t\t",
RowBox[{"Transpose", "[",
RowBox[{"ImageData", "[", "image", "]"}], "]"}]}], "\n", "\t",
"]"}]}], ";", "\n", "\t",
RowBox[{"imgDim", " ", "=", " ",
RowBox[{"ImageDimensions", "[", "image", "]"}]}], ";", "\n", "\t",
RowBox[{"(*", " ",
RowBox[{"create", " ", "random", " ", "fields"}], " ", "*)"}], "\n",
"\t",
RowBox[{"xfield", " ", "=", " ",
RowBox[{"RandomReal", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], ",", " ", "imgDim"}],
"]"}]}], ";", "\n", "\t",
RowBox[{"yfield", " ", "=", " ",
RowBox[{"RandomReal", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], ",", " ", "imgDim"}],
"]"}]}], ";", "\n", "\t",
RowBox[{"xConvolvedField", " ", "=", " ",
RowBox[{
RowBox[{"GaussianFilter", "[",
RowBox[{"xfield", ",", " ",
RowBox[{
RowBox[{"2", "*", "sigma"}], " ", "+", " ", "1"}], ",", " ",
RowBox[{"Padding", "\[Rule]", "0"}]}], "]"}], " ", "*", " ",
"alpha"}]}], ";", "\n", "\t",
RowBox[{"yConvolvedField", " ", "=", " ",
RowBox[{
RowBox[{"GaussianFilter", "[",
RowBox[{"yfield", ",", " ",
RowBox[{
RowBox[{"2", "*", "sigma"}], " ", "+", " ", "1"}], ",", " ",
RowBox[{"Padding", "\[Rule]", "0"}]}], "]"}], " ", "*", " ",
"alpha"}]}], ";", " ", "\n", "\t",
RowBox[{"fields", " ", "=", " ",
RowBox[{"Transpose", " ", "/@", " ",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{"xConvolvedField", ",", " ", "yConvolvedField"}], "}"}],
"]"}]}]}], ";", "\n", "\t",
RowBox[{"imageCoords", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",", " ", "j"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", " ",
RowBox[{"imgDim", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"j", ",", " ",
RowBox[{"imgDim", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "}"}]}], "]"}]}], ";", "\t",
"\n", "\t",
RowBox[{"newposition", " ", "=", " ",
RowBox[{"imageCoords", " ", "+", " ", "fields"}]}], ";", "\n", "\t",
RowBox[{"lower", " ", "=", " ",
RowBox[{"Floor", "[", "newposition", "]"}]}], ";",
"\[IndentingNewLine]", "\t",
RowBox[{"higher", " ", "=", " ",
RowBox[{"Ceiling", "[", "newposition", "]"}]}], ";", "\n", "\t",
RowBox[{"disp", " ", "=", " ",
RowBox[{"imageCoords", " ", "-", " ", "lower"}]}], ";", "\n", "\t",
RowBox[{"lowhigh", " ", "=", " ", "lower"}], ";", "\n", "\t",
RowBox[{"highlow", " ", "=", " ", "higher"}], ";", "\n", "\t",
RowBox[{
RowBox[{"lowhigh", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "2"}], "]"}], "]"}], " ",
"=", " ",
RowBox[{"higher", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "2"}], "]"}], "]"}]}], ";",
"\n", "\t",
RowBox[{
RowBox[{"highlow", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "2"}], "]"}], "]"}], " ",
"=", " ",
RowBox[{"lower", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "2"}], "]"}], "]"}]}], ";",
"\n", "\t", "\n", "\t",
RowBox[{
RowBox[{"imageValue", "[",
RowBox[{"{",
RowBox[{"x_", ",", " ", "y_"}], "}"}], "]"}], ":=", " ", "\n", "\t\t",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"x", " ", ">", " ", "0"}], " ", "&&", " ",
RowBox[{"x", " ", "\[LessEqual]", " ",
RowBox[{"imgDim", "[",
RowBox[{"[", "1", "]"}], "]"}]}], " ", "&&", " ",
RowBox[{"y", " ", ">", " ", "0"}], " ", "&&", " ",
RowBox[{"y", " ", "\[LessEqual]", " ",
RowBox[{"imgDim", "[",
RowBox[{"[", "2", "]"}], "]"}]}]}], ",", " ",
RowBox[{"imageData", "[",
RowBox[{"[",
RowBox[{"Sequence", " ", "@@", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "y"}], "}"}]}], "]"}], "]"}], ",", " ",
"1"}], "]"}]}], ";", "\n", "\t", "\n", "\t",
RowBox[{
RowBox[{"{",
RowBox[{
"topLeft", ",", " ", "bottomLeft", ",", " ", "bottomRight", " ", ",",
" ", "topRight"}], "}"}], " ", "=", "\n", "\t\t ",
RowBox[{"fastMappings", "[",
RowBox[{
"lower", ",", " ", "higher", ",", " ", "lowhigh", ",", " ", "highlow",
",", " ", "imageData", ",", " ",
RowBox[{"imgDim", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", " ",
RowBox[{"imgDim", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], ";", "\n", "\t", "\n",
"\t",
RowBox[{"xInterpolationTop", " ", "=", " ",
RowBox[{"topLeft", " ", "+", " ",
RowBox[{
RowBox[{"disp", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "1"}], "]"}], "]"}], " ",
"*", " ",
RowBox[{"(",
RowBox[{"topRight", " ", "-", " ", "topLeft"}], ")"}]}]}]}], ";",
"\[IndentingNewLine]", "\t",
RowBox[{"xInterpolationBottom", " ", "=", " ",
RowBox[{"bottomLeft", " ", "+", " ",
RowBox[{
RowBox[{"disp", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "1"}], "]"}], "]"}], " ",
"*", " ",
RowBox[{"(",
RowBox[{"bottomRight", " ", "-", " ", "bottomLeft"}], ")"}]}]}]}],
";", "\[IndentingNewLine]", "\t",
RowBox[{"Image", "@",
RowBox[{"Transpose", "[",
RowBox[{"xInterpolationBottom", " ", "+", " ",
RowBox[{
RowBox[{"disp", "[",
RowBox[{"[",
RowBox[{"All", ",", " ", "All", ",", " ", "2"}], "]"}], "]"}], " ",
"*", " ",
RowBox[{"(",
RowBox[{
"xInterpolationTop", " ", "-", " ", "xInterpolationBottom"}],
")"}]}]}], "]"}]}]}]}], "\n", "]"}]}]], "Code"]
}, Open ]],
Cell[CellGroupData[{
Cell["Image Table", "Chapter",
CellChangeTimes->{{3.6757869410586863`*^9, 3.6757869587695847`*^9}, {
3.676045956603855*^9, 3.676045960475119*^9}, {3.676051044799789*^9,
3.67605104658801*^9}, {3.676051917847702*^9, 3.676051919071334*^9}}],
Cell[CellGroupData[{
Cell["Delete ? images", "Subsubsection",
CellChangeTimes->{{3.676544014526479*^9, 3.676544026437951*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FileHash", "[",
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "dir", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "file", "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.676386195700056*^9, 3.676386198293302*^9},
3.676839962767638*^9}],
Cell[BoxData["31954948101503410459035119632005782770"], "Output",
CellChangeTimes->{3.6763862498644114`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FileHash", "[",
"\"\\"", "]"}]], "Input",
CellChangeTimes->{{3.676427559733563*^9, 3.67642760132613*^9}}],
Cell[BoxData["121651544538873266217131651571226942085"], "Output",
CellChangeTimes->{3.676427606334774*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"names", "=",
RowBox[{"Sort", "@", "names"}]}]], "Input",
CellChangeTimes->{{3.676733341955057*^9, 3.676733363392397*^9}}],
Cell[BoxData[
InterpretationBox[
TagBox[
FrameBox[GridBox[{
{
ItemBox[
TagBox[
RowBox[{"{",
RowBox[{
"0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6",
",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",",
"13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",",
"19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",",
"25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",",
"31", ",", "32", ",", "33", ",", "34", ",", "35", ",", "36", ",",
"37", ",", "38", ",", "39", ",", "40", ",",
TemplateBox[{"65454"},
"OutputSizeLimit`Skeleton",
DisplayFunction->(FrameBox[
RowBox[{"\" \[CenterEllipsis]\"", #, "\"\[CenterEllipsis] \""}],
Background -> GrayLevel[0.75],
BaseStyle -> {
"Deploy", FontColor -> GrayLevel[1], FontSize -> Smaller,
ShowStringCharacters -> False}, BaselinePosition -> Baseline,
ContentPadding -> False, FrameMargins -> {{1, 1}, {1, 2}},
FrameStyle -> None, RoundingRadius -> 7]& )], ",", "65495", ",",
"65496", ",", "65497", ",", "65498", ",", "65499", ",", "65500",
",", "65501", ",", "65502", ",", "65503", ",", "65504", ",",
"65505", ",", "65506", ",", "65507", ",", "65508", ",", "65509",
",", "65510", ",", "65511", ",", "65512", ",", "65513", ",",
"65514", ",", "65515", ",", "65516", ",", "65517", ",", "65518",
",", "65519", ",", "65520", ",", "65521", ",", "65522", ",",
"65523", ",", "65524", ",", "65525", ",", "65526", ",", "65527",
",", "65528", ",", "65529", ",", "65530", ",", "65531", ",",
"65532", ",", "65533", ",", "65534", ",", "65535"}], "}"}],
Short[#, 5]& ],
BaseStyle->{Deployed -> False},
StripOnInput->False]},
{GridBox[{
{
TagBox[
TooltipBox[
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource[
"FEStrings", "sizeBriefExplanation"], StandardForm],
ImageSizeCache->{58., {2., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarCategory",
StripOnInput->False],
StyleBox[
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
StandardForm]], DynamicUpdating -> True, StripOnInput ->
False]],
Annotation[#,
Style[
Dynamic[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]],
DynamicUpdating -> True], "Tooltip"]& ],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm],
ImageSizeCache->{50., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 13, 31202440846135173814, 5/2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm],
ImageSizeCache->{56., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 13, 31202440846135173814, 5 2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
ImageSizeCache->{42., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
ImageSizeCache->{51., {1., 10.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 13, 31202440846135173814, Infinity],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
ImageSizeCache->{74., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>FrontEndExecute[{
FrontEnd`SetOptions[
FrontEnd`$FrontEnd,
FrontEnd`PreferencesSettings -> {"Page" -> "Evaluation"}],
FrontEnd`FrontEndToken["PreferencesDialog"]}],
Evaluator->None,
Method->"Preemptive"]}
},
AutoDelete->False,
FrameStyle->GrayLevel[0.85],
GridBoxDividers->{"Columns" -> {False, {True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxDividers->{
"Columns" -> {{False}}, "ColumnsIndexed" -> {}, "Rows" -> {{False}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2],
Offset[1.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
Background->RGBColor[0.9657, 0.9753, 0.9802],
FrameMargins->{{12, 12}, {0, 15}},
FrameStyle->GrayLevel[0.85],
RoundingRadius->5,
StripOnInput->False],
Deploy,
DefaultBaseStyle->"Deploy"],
Out[13]]], "Output",
CellChangeTimes->{{3.676733343060053*^9, 3.676733364079908*^9},
3.676818483437003*^9, 3.6768185870706472`*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Functions", "Subsubsection",
CellChangeTimes->{{3.6765080326181498`*^9, 3.6765080356106586`*^9}}],
Cell[BoxData[
RowBox[{"Rn", ":=",
RowBox[{"RandomInteger", "[",
RowBox[{"{",
RowBox[{"0", ",", "15"}], "}"}], "]"}]}]], "Input",
CellChangeTimes->{{3.676580424656683*^9, 3.67658043972754*^9}, {
3.676580533659255*^9, 3.676580533826507*^9}, {3.6765806096483*^9,
3.676580610265696*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"tempimages", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"ImageResize", "[",
RowBox[{
RowBox[{"Import", "[", "#", "]"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "40"}], "}"}]}], "]"}], "&"}], "/@",
RowBox[{"FileNames", "[",
RowBox[{"path", "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[", "x", "]"}], "<>", "\"\*.gif\>\""}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.676154453130287*^9, 3.6761544929440193`*^9}, {
3.676154535121266*^9, 3.6761545492769957`*^9}, {3.676154681188898*^9,
3.676154689685321*^9}, 3.676154788694305*^9, {3.676155106968356*^9,
3.676155107082427*^9}, {3.6761565960415297`*^9, 3.676156620414228*^9}, {
3.6761567263982277`*^9, 3.676156733524907*^9}, {3.676156835304328*^9,
3.6761568370884027`*^9}, {3.676157088421714*^9, 3.676157140131295*^9},
3.676213669479601*^9, {3.6762325713962297`*^9, 3.676232576698382*^9}, {
3.676232638852393*^9, 3.6762326398533297`*^9}, {3.676232679646392*^9,
3.676232723595276*^9}, {3.6762345357297153`*^9, 3.676234549135532*^9}, {
3.676234679001502*^9, 3.676234718444868*^9}, {3.6762347598727007`*^9,
3.676234779664349*^9}, {3.6762348631075363`*^9, 3.6762349055071707`*^9},
3.676234937183608*^9, {3.67629956190793*^9, 3.676299586680951*^9}, {
3.676398753576346*^9, 3.6763987566655827`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"selection", "[", "x_", "]"}], ":=", "\n",
RowBox[{"Select", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"RemoveAlphaChannel", "[",
RowBox[{"#", ",", "White"}], "]"}], "&"}], "/@",
RowBox[{"tempimages", "[", "x", "]"}]}], ",",
RowBox[{
RowBox[{".2", "<",
RowBox[{"ImageMeasurements", "[",
RowBox[{"#", ",", "\"\\""}], "]"}], "<", ".95"}],
"&"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.67615679011751*^9, 3.6761568206400623`*^9}, {
3.676218311306553*^9, 3.676218361086072*^9}, {3.676218462009056*^9,
3.676218472367075*^9}, 3.6762237059084473`*^9, {3.676224984874566*^9,
3.676225020420689*^9}, 3.676231594200651*^9, 3.6762316284700623`*^9, {
3.6762349857129803`*^9, 3.676235025650382*^9}, {3.676235085286776*^9,
3.676235121568922*^9}, {3.6762986521977158`*^9, 3.676298653888122*^9}, {
3.6762994930695753`*^9, 3.676299534679008*^9}, {3.676299592926441*^9,
3.676299598527686*^9}, {3.676299647050725*^9, 3.6762996479225492`*^9}, {
3.6762997042011137`*^9, 3.6762997056015873`*^9}, {3.6763100063744993`*^9,
3.676310012838464*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"imageAugmenter", "[", "image_Image", "]"}], " ", ":=", " ",
RowBox[{"Module", "[", "\n", "\t",
RowBox[{
RowBox[{"{", "}"}], ",", "\n", "\t",
RowBox[{
RowBox[{"RandomChoice", "[",
RowBox[{"{", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "0.5"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "0.5"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",",
"\n", "\t",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35"}], ",", "0.35"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "2"}], "}"}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "400", ",", "20"}], "]"}]}], "&"}], ",",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "450", ",", "20"}], "]"}]}], "&"}], ",",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "400", ",", "19"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", ".5"}], "}"}]}], "]"}],
"&"}], ",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "430", ",", "19"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "2"}], "}"}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "430", ",", "19"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "2"}], "}"}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35"}], ",", "0.35"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], ",", "400",
",", "20"}], "]"}]}], "&"}], ",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35"}], ",", "0.35"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], ",", "400",
",", "20"}], "]"}]}], "&"}], ",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "450", ",", "20"}], "]"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}]}], "}"}]}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "400", ",", "19"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", ".5"}], "}"}]}], "]"}],
",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}]}], "}"}]}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "430", ",", "19"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "2"}], "}"}]}], "]"}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}]}], "}"}]}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ImageEffect", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{"#", ",", "430", ",", "19"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "2"}], "}"}]}], "]"}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}]}], "}"}]}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35"}], ",", "0.35"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], ",",
"400", ",", "20"}], "]"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}]}], "}"}]}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35"}], ",", "0.35"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], ",",
"400", ",", "20"}], "]"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Rn", ",", "Rn"}], "}"}]}], "}"}]}]}], "]"}], "&"}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Image", "@",
RowBox[{"ElasticDeformation", "[",
RowBox[{
RowBox[{"ImageRotate", "[",
RowBox[{"#", ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35"}], ",", "0.35"}], "}"}], "]"}], ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], ",", "430",
",", "20"}], "]"}]}], "&"}]}], "}"}], "]"}], "@", "image"}]}],
"\n", "]"}]}]], "Code",
CellChangeTimes->{{3.6760751023584023`*^9, 3.6760752709320908`*^9}, {
3.6760753735613337`*^9, 3.6760753906396914`*^9}, {3.676075422985108*^9,
3.67607545659505*^9}, {3.6760756825427094`*^9, 3.6760757361636543`*^9}, {
3.6760758033564663`*^9, 3.67607580391149*^9}, {3.676077582408264*^9,
3.676077584777361*^9}, {3.676077642838492*^9, 3.67607764389434*^9}, {
3.676078765884412*^9, 3.676078769095961*^9}, {3.67613389023459*^9,
3.676133902014473*^9}, {3.6761339404147987`*^9, 3.676133949181808*^9}, {
3.676133999843232*^9, 3.6761340311197357`*^9}, {3.67613406132076*^9,
3.676134063271133*^9}, {3.676134250746944*^9, 3.6761342595464907`*^9}, {
3.676134347378381*^9, 3.676134377672769*^9}, {3.676134555686376*^9,
3.676134562417285*^9}, {3.676134695520789*^9, 3.676134824283968*^9}, {
3.676134863219892*^9, 3.676134922600623*^9}, {3.676135132983135*^9,
3.676135202117984*^9}, {3.676135272633984*^9, 3.676135287444254*^9}, {
3.676135361531349*^9, 3.676135362283244*^9}, {3.676135449499625*^9,
3.6761354563015623`*^9}, {3.6761355413539886`*^9, 3.676135617798839*^9}, {
3.676154561364085*^9, 3.67615461067766*^9}, {3.6761546453048697`*^9,
3.676154646497325*^9}, {3.676154696533971*^9, 3.676154759027157*^9}, {
3.676154949910582*^9, 3.676155007085837*^9}, {3.67621803824767*^9,
3.676218049352847*^9}, {3.676218093155548*^9, 3.676218094145713*^9}, {
3.676218492589036*^9, 3.676218510076783*^9}, {3.676218541717902*^9,
3.676218545161436*^9}, {3.6762186115200567`*^9, 3.6762186152180367`*^9},
3.676231809078529*^9, {3.676235389492156*^9, 3.676235404166377*^9}, {
3.6765789933142767`*^9, 3.676579004518264*^9}, {3.67657936628365*^9,
3.6765794415871887`*^9}, {3.676579505512513*^9, 3.676579563655409*^9}, {
3.6765797064587107`*^9, 3.676579708568264*^9}, {3.676579766571216*^9,
3.6765798093665323`*^9}, {3.676580300126562*^9, 3.676580385401472*^9}, {
3.6767352529194517`*^9, 3.676735322971712*^9}, {3.676735584837075*^9,
3.676735627639744*^9}, {3.676735660672208*^9, 3.676735674803995*^9}, {
3.676737079299921*^9, 3.6767370802049723`*^9}, {3.67673733719634*^9,
3.676737364730776*^9}, {3.6767374507085257`*^9, 3.6767374574627867`*^9}, {
3.6767375189727373`*^9, 3.67673758314088*^9}, {3.676737824304264*^9,
3.676737825828991*^9}, {3.676737864232895*^9, 3.676737977417367*^9}, {
3.676738029603137*^9, 3.676738034267535*^9}, {3.6767383418357687`*^9,
3.67673836472889*^9}, {3.676738522816352*^9, 3.676738526565563*^9}, {
3.6767400633579273`*^9, 3.676740063905184*^9}, {3.676764493302465*^9,
3.676764502878536*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"glyphcollection", "[", "glyph_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "n", "}"}], ",",
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "glyph", "]"}]}], "]"}], ";",
RowBox[{"ParallelMap", "[",
RowBox[{
RowBox[{
RowBox[{"imageAugmenter", "[", "#", "]"}], "&"}], ",",
RowBox[{"RandomChoice", "[",
RowBox[{
RowBox[{"tempimages", "[", "glyph", "]"}], ",",
RowBox[{"100", "-",
RowBox[{"Length", "@",
RowBox[{"FileNames", "[", "]"}]}]}]}], "]"}]}], "]"}]}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.676738504309823*^9, 3.676738512001279*^9}, {
3.676738557917366*^9, 3.67673863018123*^9}, {3.676738696834281*^9,
3.676738778894643*^9}, {3.676738810053275*^9, 3.67673883042725*^9}, {
3.6767389075696077`*^9, 3.6767389084598846`*^9}, {3.6767414771268167`*^9,
3.6767414786497498`*^9}, {3.676741773388907*^9, 3.6767417780925283`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Export generated images to disk", "Subsubsection",
CellChangeTimes->{{3.6765080326181498`*^9, 3.6765080356106586`*^9}, {
3.676627707706608*^9, 3.67662772163135*^9}}],
Cell[BoxData[
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"temp", "=", "x"}], ";",
RowBox[{
RowBox[{
RowBox[{"Export", "[",
RowBox[{
RowBox[{"path", "<>",
RowBox[{"ToString", "[", "x", "]"}], "<>", "\"\\>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"Hash", "[", "#", "]"}], "]"}], "<>", "\"\<.gif\>\""}],
",", "#"}], "]"}], "&"}], "/@",
RowBox[{"glyphcollection", "[", "x", "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"Range", "[",
RowBox[{"10063", ",", "65535"}], "]"}]}], "}"}]}], "]"}], ",", "x"}],
"]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQBWIQvUzu0cw5Ka8d5/nKLgbRUfuMN4JoqeWnwfTe+l2H
QXSGQecpEM2xtv8ciLZN5DwPopN29j8B0SqrZ4LpCb/mfQfRcyTLfoLoriie
S+eB9KlDj66C6LTfWk9B9BFzUzCdben2AUQnNDz5CKJZbHKuXQLSHRs+gOkT
vX8YLwNpkUMvWUH0a4twVxDdcnkpmDb5onMdRCv9XHkbRE8qj/wEosV1MsB0
3jZDvitAmvX1eTA9q2WzLYjW33wcTB+4oSB3FaRexhNM27nYmd4H0lsP3wfT
tsEvjz0EqVNIOQ6iw3YpTf8JpGu+zAHTO1bvrv4DMpdTsQZEAwANQLun
"]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Neural Network", "Chapter",
CellChangeTimes->{{3.6757869410586863`*^9, 3.6757869587695847`*^9}, {
3.676045956603855*^9, 3.676045960475119*^9}, {3.676051044799789*^9,
3.67605104658801*^9}, {3.676051917847702*^9, 3.676051919071334*^9}, {
3.676507928592152*^9, 3.67650793245385*^9}, {3.6767699174647617`*^9,
3.676769921635754*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"lenet", "=",
RowBox[{"NetChain", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ConvolutionLayer", "[",
RowBox[{"20", ",",
RowBox[{"{",
RowBox[{"5", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"ElementwiseLayer", "[", "Ramp", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PoolingLayer", "[",
RowBox[{
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"ConvolutionLayer", "[",
RowBox[{"50", ",",
RowBox[{"{",
RowBox[{"5", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"ElementwiseLayer", "[", "Ramp", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PoolingLayer", "[",
RowBox[{
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"FlattenLayer", "[", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"DotPlusLayer", "[", "500", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"ElementwiseLayer", "[", "Ramp", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"DotPlusLayer", "[", "101", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"SoftmaxLayer", "[", "]"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"\"\\"", "<>",
RowBox[{"ToString", "[", "x", "]"}]}], "]"}], ";",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"ImageResize", "[",
RowBox[{
RowBox[{"Import", "[", "#", "]"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "40"}], "}"}]}], "]"}], "\[Rule]", "x"}],
"&"}], "/@",
RowBox[{"FileNames", "[", "\"\<*.gif\>\"", "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "100"}], "}"}]}], "]"}]}]}],
";"}]], "Input",
CellChangeTimes->{{3.676508182514427*^9, 3.676508183943961*^9}, {
3.676508243511991*^9, 3.6765083075458612`*^9}, {3.676508358843294*^9,
3.6765083610088873`*^9}, {3.67650840377806*^9, 3.67650841562573*^9}, {
3.676508507240221*^9, 3.676508532877035*^9}, {3.676508576623888*^9,
3.6765085786844*^9}, {3.676543835211618*^9, 3.676543853515112*^9}, {
3.676544418019414*^9, 3.676544445253652*^9}, {3.6765445034666853`*^9,
3.6765445164331827`*^9}, {3.6765445716434927`*^9, 3.67654457596037*^9}, {
3.676545234903378*^9, 3.676545235905508*^9}, 3.676546421902636*^9, {
3.6765466529621973`*^9, 3.676546656871828*^9}, {3.676546699013855*^9,
3.6765467223943567`*^9}, {3.676546881273192*^9, 3.676546918473569*^9}, {
3.67654698440073*^9, 3.676547026454598*^9}, {3.676547074852386*^9,
3.676547098761631*^9}, {3.676547150506968*^9, 3.676547152998527*^9}, {
3.676756246863796*^9, 3.676756273006955*^9}, 3.676756311345957*^9,
3.676756598966919*^9, {3.676756919658243*^9, 3.676756934614394*^9}, {
3.676756973668951*^9, 3.676757043511436*^9}, {3.6767570981201*^9,
3.67675709996916*^9}, {3.6767571411472263`*^9, 3.676757151960194*^9}, {
3.67675728568607*^9, 3.676757290841915*^9}, {3.676757345381084*^9,
3.676757353771707*^9}, {3.676760412352748*^9, 3.676760412597875*^9}, {
3.6767617271489153`*^9, 3.6767617308813143`*^9}, {3.676839243273481*^9,
3.676839247274*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"lenet", "=",
RowBox[{"NetTrain", "[",
RowBox[{"lenet", ",", "dataset", ",", "loss", ",",
RowBox[{"MaxTrainingRounds", "\[Rule]", " ", "20"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.676756514353557*^9, 3.6767565286173477`*^9}, {
3.6767573595114117`*^9, 3.676757360747217*^9}, {3.676758408586494*^9,
3.676758410061743*^9}, {3.676760226020903*^9, 3.6767602263451643`*^9}, {
3.6767605824836807`*^9, 3.676760583476247*^9}, {3.676762563831882*^9,
3.67676256394077*^9}},
CellID->675551318],
Cell[BoxData[
TagBox[
TemplateBox[{RowBox[{
StyleBox[
TagBox["NetChain", "SummaryHead"], "NonInterpretableSummary"],
StyleBox["[", "NonInterpretableSummary"],
DynamicModuleBox[{Typeset`open$$ = False},
PanelBox[
PaneSelectorBox[{False -> GridBox[{{
GridBox[{{
TagBox["\"\"", "SummaryItem"],
TagBox["\"Input\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"encoded\"", "\" \"",
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"1\"", "\"28\"", "\"28\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"]}, "RowDefault"], "SummaryItem"]}, {
TagBox["\"1\"", "SummaryItem"],
TagBox["\"Convolution\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"20\"", "\"24\"", "\"24\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"2\"", "SummaryItem"],
TagBox["\"Elementwise\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"20\"", "\"24\"", "\"24\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"3\"", "SummaryItem"],
TagBox["\"Pooling\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"20\"", "\"12\"", "\"12\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"4\"", "SummaryItem"],
TagBox["\"Convolution\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"50\"", "\"8\"", "\"8\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"5\"", "SummaryItem"],
TagBox["\"Elementwise\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"50\"", "\"8\"", "\"8\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"6\"", "SummaryItem"],
TagBox["\"Pooling\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"50\"", "\"4\"", "\"4\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"7\"", "SummaryItem"],
TagBox["\"Flatten\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"800\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"8\"", "SummaryItem"],
TagBox["\"DotPlus\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"500\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"9\"", "SummaryItem"],
TagBox["\"Elementwise\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"500\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"10\"", "SummaryItem"],
TagBox["\"DotPlus\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"101\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"11\"", "SummaryItem"],
TagBox["\"Softmax\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"101\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"\"", "SummaryItem"],
TagBox["\"Output\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"decoded\"", "\" \"",
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"101\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"]}, "RowDefault"], "SummaryItem"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
GridBox[{{
TagBox["\"\"", "SummaryItem"],
TagBox["\"Input\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"encoded\"", "\" \"",
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"1\"", "\"28\"", "\"28\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"]}, "RowDefault"], "SummaryItem"]}, {
TagBox["\"1\"", "SummaryItem"],
TagBox["\"Convolution\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"20\"", "\"24\"", "\"24\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"2\"", "SummaryItem"],
TagBox["\"Elementwise\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"20\"", "\"24\"", "\"24\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"3\"", "SummaryItem"],
TagBox["\"Pooling\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"20\"", "\"12\"", "\"12\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"4\"", "SummaryItem"],
TagBox["\"Convolution\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"50\"", "\"8\"", "\"8\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"5\"", "SummaryItem"],
TagBox["\"Elementwise\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"50\"", "\"8\"", "\"8\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"6\"", "SummaryItem"],
TagBox["\"Pooling\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"tensor\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{
"\[Times]", "\"\[Times]\"", "\"50\"", "\"4\"", "\"4\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"7\"", "SummaryItem"],
TagBox["\"Flatten\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"800\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"8\"", "SummaryItem"],
TagBox["\"DotPlus\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"500\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"9\"", "SummaryItem"],
TagBox["\"Elementwise\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"500\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"10\"", "SummaryItem"],
TagBox["\"DotPlus\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"101\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"11\"", "SummaryItem"],
TagBox["\"Softmax\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"101\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"], "SummaryItem"]}, {
TagBox["\"\"", "SummaryItem"],
TagBox["\"Output\"", "SummaryItem"],
TagBox[
TemplateBox[{"\"decoded\"", "\" \"",
TemplateBox[{"\"vector\"", "\" \"",
TemplateBox[{
"\"(\"", "\"\[VeryThinSpace]\"", "\"size\"", "\":\"",
"\" \"",
TemplateBox[{"\[Times]", "\"\[Times]\"", "\"101\""},
"RowWithSeparators"], "\"\[VeryThinSpace]\"", "\")\""},
"Row", DisplayFunction -> (RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction -> (RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.5],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle -> GrayLevel[0.33333333333333337`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]], "GrayLevel[0.5]"], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.5];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.5], Editable -> False, Selectable ->
False]}]}], "]"}]& ), BaseStyle -> GrayLevel[0.5]]},
"RowDefault"]}, "RowDefault"], "SummaryItem"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic], BaselinePosition ->
Baseline], DynamicModuleValues :> {}],
StyleBox["]", "NonInterpretableSummary"]}]},
"CopyTag",
DisplayFunction->(#& ),
InterpretationFunction->("None"& )],
False,
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{3.676757502940117*^9, 3.676758428936306*^9,
3.676758565283226*^9, 3.6767603662941017`*^9, 3.67676042867332*^9,
3.6767605771560907`*^9, 3.676761082046625*^9, 3.67676193951436*^9,
3.676762668681697*^9, 3.676763893373769*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Main Results", "Section",
CellChangeTimes->{{3.549542055118816*^9, 3.5495420583168*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"comma", "=",
RowBox[{"Import", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\\""}], "]"}]}]], "Input",
CellChangeTimes->{{3.676763074934066*^9, 3.676763082651672*^9},
3.676763919811138*^9, {3.676763961972006*^9, 3.67676401688153*^9}, {
3.676764139474551*^9, 3.67676414345051*^9}, {3.676839255149475*^9,
3.67683926288163*^9}, 3.676839981579451*^9}],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt1UFqlWcYhuFD7aDDbsFddNphp0oXoBjFSQpRKN2NS3CHen5KiKXGRhtz
///3Xhc8Bh3lvN/N8fHzP568/OF0Or356fzHk2d//np19eyvpz+f//L75ZvX
ry4vXvx2+fbi1cXVL88fnf/x/Y+n07vzz/MPAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYN8+3DL4Vrc1dd+D
zUP1pkc+Vfemw5nqvnQ4T92SFmequ9HhTHUnGpyr7kOHM9U96HCuuoE9jEb9
7nsaD6t+7z2O769+4yOM76N+1yON+1e/6ZHG/arf86jj/6vf8Ojj29Vvt8r4
evWbrTS+Xv1mK467qd9p5fFl9fusPm5Xv82U8Xn1u0wa/1a/ybRxo36LqeNv
9TtMHf0bTN909f2nb7L69ja7wfruNrvB+uY2t8H61qY/29cmqW9tsxus72z6
s31ugvrGNrvB+r6mP9v3Vlbf1vRn+97K6tva7Abru5r+bP9bVX1Xm91gfVOb
3WB9T9OfHWerqe9psxusb2n6s2NtJfUtTX92rK2kvqXNbrC+o83ub1Pf0vRn
x9pK6lva7P429T1tdoP1LW12f5v6nqY/O85WVN/UZjdY39P0Z8fZiuqbmv7s
GFtVfVeb3d+mvq3pz/a91dX3tdn9beobmwbrG9vs/jb1nW12f5v61vUb1r+n
/tbaCjeYpr73Ht6s/v0n93etvnv5TvVn0d+N+v7V+9SfS3836jco3qb+bPr7
p/odHvpN6s+ovy+b8BZ1e/r7byu/Qd2e/u5uxdtr77hWubv+KOmPkv4o6Y+S
/ijpj5L+KOmPkv4oaY+S/ijpj5L+KGmPiu8+SvqjpD9K+qOiPUr6o6Q/Svqj
pD8qVXv6Y6M9SvqjpD9K2qOkPyrao6Q/Svqjoj1K+qNStKc/rumPivYoaY+S
/ihpj4rvPkrao+K7j0rRnv64pj0q2qOkP0rao+K7j4r2qBTt6Y9r2qOiPUra
o+K7j5L2qPjuo6I9KtqjpD0qvvuoaI+K9ihpj4r2qPh/l4r2qGiPivaoaI+K
9qhoj4r2qGiPivaoaI+K9qhoj4r2KBTdaY+N9qhoj4r2KOiOQtWd9thoj4Lv
PQq6o6I9KtqjoDsKuqNQdqe92bRHQXc8tLo53c1Vd6e9mermtDdP3Zru5qk7
091MdWe6m6nuTHvz1H1pbq66M93NVvemvdnq5nQ3m+Yo6Y6S9ijpjpLuKGmO
kvYo6Y6S3ihpjpL2KOmOmt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCEf
AWf+XcA=
"], {{0, 1200}, {160, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{19.298437500000006`, Automatic},
ImageSizeRaw->{160, 1200},
PlotRange->{{0, 160}, {0, 1200}}]], "Output",
CellChangeTimes->{3.676763084245228*^9, 3.676763897585492*^9,
3.676763963431151*^9, 3.6767640014013863`*^9, 3.676764143888199*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"lenet", "[",
RowBox[{"ImageResize", "[",
RowBox[{"comma2", ",",
RowBox[{"{",
RowBox[{"40", ",", "40"}], "}"}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.67676438986407*^9, 3.6767643950503798`*^9}, {
3.6767647004207706`*^9, 3.6767647102733088`*^9}}],
Cell[BoxData["\<\",\"\>"], "Output",
CellChangeTimes->{{3.6767643954469757`*^9, 3.676764414365527*^9},
3.676764710741726*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"OCR", "=",
RowBox[{
"Import", "[",
"\"\\"", "]"}]}]], "Input",
CellChangeTimes->{{3.676912815108304*^9, 3.67691285431065*^9}, {
3.676914683202799*^9, 3.676914686109448*^9}}],
Cell[BoxData[
StyleBox[
TagBox[
TagBox[
RowBox[{"NetChain",
RowBox[{"[",
PanelBox[
DynamicModuleBox[{NeuralNetworks`NetChain`PackagePrivate`grid$$ =
Grid[{{
MouseAppearance[
Annotation["", {"Inputs", "Input"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation["Input", {"Inputs", "Input"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"encoded", " ",
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"1", "40", "40"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}]}], {
"Inputs", "Input"}, "Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["1",
GrayLevel[0.5]], {"Layers", "1"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ConvolutionLayer, {"Layers", "1"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "40", "40"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "1"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["2",
GrayLevel[0.5]], {"Layers", "2"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[BatchNormalizationLayer, {"Layers", "2"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "40", "40"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "2"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["3",
GrayLevel[0.5]], {"Layers", "3"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ElementwiseLayer, {"Layers", "3"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "40", "40"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "3"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["4",
GrayLevel[0.5]], {"Layers", "4"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[PoolingLayer, {"Layers", "4"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "20", "20"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "4"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["5",
GrayLevel[0.5]], {"Layers", "5"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ConvolutionLayer, {"Layers", "5"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "20", "20"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "5"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["6",
GrayLevel[0.5]], {"Layers", "6"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[BatchNormalizationLayer, {"Layers", "6"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "20", "20"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "6"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["7",
GrayLevel[0.5]], {"Layers", "7"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ElementwiseLayer, {"Layers", "7"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "20", "20"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "7"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["8",
GrayLevel[0.5]], {"Layers", "8"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[PoolingLayer, {"Layers", "8"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "10", "10"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "8"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["9",
GrayLevel[0.5]], {"Layers", "9"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ConvolutionLayer, {"Layers", "9"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "10", "10"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "9"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["10",
GrayLevel[0.5]], {"Layers", "10"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[BatchNormalizationLayer, {"Layers", "10"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "10", "10"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "10"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["11",
GrayLevel[0.5]], {"Layers", "11"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ElementwiseLayer, {"Layers", "11"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "10", "10"}, "\[Times]"], "\[VeryThinSpace]",
")"}, BaseStyle -> GrayLevel[0.5]]}], {"Layers", "11"},
"Mouse"], "LinkHand"]}, {
MouseAppearance[
Annotation[
Style["12",
GrayLevel[0.5]], {"Layers", "12"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[PoolingLayer, {"Layers", "12"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "5", "5"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "12"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["13",
GrayLevel[0.5]], {"Layers", "13"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ConvolutionLayer, {"Layers", "13"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "5", "5"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "13"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["14",
GrayLevel[0.5]], {"Layers", "14"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[BatchNormalizationLayer, {"Layers", "14"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "5", "5"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "14"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["15",
GrayLevel[0.5]], {"Layers", "15"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ElementwiseLayer, {"Layers", "15"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "5", "5"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "15"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["16",
GrayLevel[0.5]], {"Layers", "16"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[PoolingLayer, {"Layers", "16"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"tensor", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"50", "2", "2"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "16"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["17",
GrayLevel[0.5]], {"Layers", "17"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[FlattenLayer, {"Layers", "17"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"vector", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"200"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "17"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["18",
GrayLevel[0.5]], {"Layers", "18"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[DotPlusLayer, {"Layers", "18"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"vector", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"600"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "18"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["19",
GrayLevel[0.5]], {"Layers", "19"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[ElementwiseLayer, {"Layers", "19"}, "Mouse"],
"LinkHand"],
MouseAppearance[
Annotation[
Row[{"vector", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"600"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "19"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["20",
GrayLevel[0.5]], {"Layers", "20"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[DotPlusLayer, {"Layers", "20"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"vector", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"10001"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "20"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation[
Style["21",
GrayLevel[0.5]], {"Layers", "21"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[SoftmaxLayer, {"Layers", "21"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"vector", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"10001"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}], {"Layers", "21"}, "Mouse"],
"LinkHand"]}, {
MouseAppearance[
Annotation["", {"Outputs", "Output"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation["Output", {"Outputs", "Output"}, "Mouse"], "LinkHand"],
MouseAppearance[
Annotation[
Row[{"decoded", " ",
Row[{"vector", " ",
Row[{"(", "\[VeryThinSpace]", "size", ":", " ",
Row[{"10001"}, "\[Times]"], "\[VeryThinSpace]", ")"},
BaseStyle -> GrayLevel[0.5]]}]}], {"Outputs", "Output"},
"Mouse"], "LinkHand"]}}, Alignment -> Left, Spacings -> 1.1],
NeuralNetworks`NetChain`PackagePrivate`assoc$$ = Association[
"Type" -> "Chain", "Layers" ->
Association[
"1" -> Association[
"Type" -> "Convolution", "Arrays" ->
Association[
"Weights" -> NeuralNetworks`TensorT[4, {50, 1, 3, 3}], "Biases" ->
NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"OutputChannels" -> 50, "KernelSize" -> {3, 3},
"Stride" -> {1, 1}, "PaddingSize" -> {1, 1},
"Dilation" -> {1, 1}, "InputChannels" -> 1, "$GroupNumber" ->
1, "$InputSize" -> {40, 40}, "$OutputSize" -> {40, 40}],
"Inputs" -> Association["Input" -> NeuralNetworks`ChannelT[1,
NeuralNetworks`TensorT[2, {40, 40}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {40, 40}]]]], "2" ->
Association[
"Type" -> "BatchNormalization", "Arrays" ->
Association[
"Gamma" -> NeuralNetworks`TensorT[1, {50}], "Beta" ->
NeuralNetworks`TensorT[1, {50}], "MovingVariance" ->
NeuralNetworks`TensorT[1, {50}], "MovingMean" ->
NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"Momentum" -> 0.9, "Epsilon" -> 0.001, "Channels" -> 50,
"$Shape" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {40, 40}]]], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {40, 40}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {40, 40}]]]], "3" ->
Association[
"Type" -> "Elementwise", "Arrays" -> Association[], "Parameters" ->
Association[
"Function" -> Ramp, "$Dimensions" -> {50, 40, 40}, "$Rank" ->
3], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {40, 40}]]], "Outputs" ->
Association[
"Output" -> NeuralNetworks`TensorT[3, {50, 40, 40}]]], "4" ->
Association[
"Type" -> "Pooling", "Arrays" -> Association[], "Parameters" ->
Association[
"KernelSize" -> {3, 3}, "Stride" -> {2, 2},
"PaddingSize" -> {0, 0}, "Function" -> Max, "Channels" -> 50,
"$InputSize" -> {40, 40}, "$OutputSize" -> {20, 20}], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[3, {50, 40, 40}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]]], "5" ->
Association[
"Type" -> "Convolution", "Arrays" ->
Association[
"Weights" -> NeuralNetworks`TensorT[4, {50, 50, 3, 3}],
"Biases" -> NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"OutputChannels" -> 50, "KernelSize" -> {3, 3},
"Stride" -> {1, 1}, "PaddingSize" -> {1, 1},
"Dilation" -> {1, 1}, "InputChannels" -> 50, "$GroupNumber" ->
1, "$InputSize" -> {20, 20}, "$OutputSize" -> {20, 20}],
"Inputs" -> Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]]], "6" ->
Association[
"Type" -> "BatchNormalization", "Arrays" ->
Association[
"Gamma" -> NeuralNetworks`TensorT[1, {50}], "Beta" ->
NeuralNetworks`TensorT[1, {50}], "MovingVariance" ->
NeuralNetworks`TensorT[1, {50}], "MovingMean" ->
NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"Momentum" -> 0.9, "Epsilon" -> 0.001, "Channels" -> 50,
"$Shape" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]]], "7" ->
Association[
"Type" -> "Elementwise", "Arrays" -> Association[], "Parameters" ->
Association[
"Function" -> Ramp, "$Dimensions" -> {50, 20, 20}, "$Rank" ->
3], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {20, 20}]]], "Outputs" ->
Association[
"Output" -> NeuralNetworks`TensorT[3, {50, 20, 20}]]], "8" ->
Association[
"Type" -> "Pooling", "Arrays" -> Association[], "Parameters" ->
Association[
"KernelSize" -> {3, 3}, "Stride" -> {2, 2},
"PaddingSize" -> {0, 0}, "Function" -> Max, "Channels" -> 50,
"$InputSize" -> {20, 20}, "$OutputSize" -> {10, 10}], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[3, {50, 20, 20}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]]], "9" ->
Association[
"Type" -> "Convolution", "Arrays" ->
Association[
"Weights" -> NeuralNetworks`TensorT[4, {50, 50, 3, 3}],
"Biases" -> NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"OutputChannels" -> 50, "KernelSize" -> {3, 3},
"Stride" -> {1, 1}, "PaddingSize" -> {1, 1},
"Dilation" -> {1, 1}, "InputChannels" -> 50, "$GroupNumber" ->
1, "$InputSize" -> {10, 10}, "$OutputSize" -> {10, 10}],
"Inputs" -> Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]]], "10" ->
Association[
"Type" -> "BatchNormalization", "Arrays" ->
Association[
"Gamma" -> NeuralNetworks`TensorT[1, {50}], "Beta" ->
NeuralNetworks`TensorT[1, {50}], "MovingVariance" ->
NeuralNetworks`TensorT[1, {50}], "MovingMean" ->
NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"Momentum" -> 0.9, "Epsilon" -> 0.001, "Channels" -> 50,
"$Shape" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]]], "11" ->
Association[
"Type" -> "Elementwise", "Arrays" -> Association[], "Parameters" ->
Association[
"Function" -> Ramp, "$Dimensions" -> {50, 10, 10}, "$Rank" ->
3], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {10, 10}]]], "Outputs" ->
Association[
"Output" -> NeuralNetworks`TensorT[3, {50, 10, 10}]]], "12" ->
Association[
"Type" -> "Pooling", "Arrays" -> Association[], "Parameters" ->
Association[
"KernelSize" -> {3, 3}, "Stride" -> {2, 2},
"PaddingSize" -> {0, 0}, "Function" -> Max, "Channels" -> 50,
"$InputSize" -> {10, 10}, "$OutputSize" -> {5, 5}], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[3, {50, 10, 10}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]]], "13" ->
Association[
"Type" -> "Convolution", "Arrays" ->
Association[
"Weights" -> NeuralNetworks`TensorT[4, {50, 50, 3, 3}],
"Biases" -> NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"OutputChannels" -> 50, "KernelSize" -> {3, 3},
"Stride" -> {1, 1}, "PaddingSize" -> {1, 1},
"Dilation" -> {1, 1}, "InputChannels" -> 50, "$GroupNumber" ->
1, "$InputSize" -> {5, 5}, "$OutputSize" -> {5, 5}], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]]], "14" ->
Association[
"Type" -> "BatchNormalization", "Arrays" ->
Association[
"Gamma" -> NeuralNetworks`TensorT[1, {50}], "Beta" ->
NeuralNetworks`TensorT[1, {50}], "MovingVariance" ->
NeuralNetworks`TensorT[1, {50}], "MovingMean" ->
NeuralNetworks`TensorT[1, {50}]], "Parameters" ->
Association[
"Momentum" -> 0.9, "Epsilon" -> 0.001, "Channels" -> 50,
"$Shape" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]], "Inputs" ->
Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]]], "15" ->
Association[
"Type" -> "Elementwise", "Arrays" -> Association[], "Parameters" ->
Association[
"Function" -> Ramp, "$Dimensions" -> {50, 5, 5}, "$Rank" -> 3],
"Inputs" -> Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {5, 5}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`TensorT[3, {50, 5, 5}]]],
"16" -> Association[
"Type" -> "Pooling", "Arrays" -> Association[], "Parameters" ->
Association[
"KernelSize" -> {3, 3}, "Stride" -> {2, 2},
"PaddingSize" -> {0, 0}, "Function" -> Max, "Channels" -> 50,
"$InputSize" -> {5, 5}, "$OutputSize" -> {2, 2}], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[3, {50, 5, 5}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {2, 2}]]]], "17" ->
Association[
"Type" -> "Flatten", "Arrays" -> Association[], "Parameters" ->
Association[
"Dimensions" -> {50, 2, 2}, "$Rank" -> 3, "$OutputSize" -> 200],
"Inputs" -> Association["Input" -> NeuralNetworks`ChannelT[50,
NeuralNetworks`TensorT[2, {2, 2}]]], "Outputs" ->
Association["Output" -> NeuralNetworks`TensorT[1, {200}]]], "18" ->
Association[
"Type" -> "DotPlus", "Arrays" ->
Association[
"Weights" -> NeuralNetworks`TensorT[2, {600, 200}], "Biases" ->
NeuralNetworks`TensorT[1, {600}]], "Parameters" ->
Association["Size" -> 600, "$InputSize" -> 200], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[1, {200}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`TensorT[1, {600}]]], "19" ->
Association[
"Type" -> "Elementwise", "Arrays" -> Association[], "Parameters" ->
Association[
"Function" -> Ramp, "$Dimensions" -> {600}, "$Rank" -> 1],
"Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[1, {600}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`TensorT[1, {600}]]], "20" ->
Association[
"Type" -> "DotPlus", "Arrays" ->
Association[
"Weights" -> NeuralNetworks`TensorT[2, {10001, 600}], "Biases" ->
NeuralNetworks`TensorT[1, {10001}]], "Parameters" ->
Association["Size" -> 10001, "$InputSize" -> 600], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[1, {600}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`TensorT[1, {10001}]]],
"21" -> Association[
"Type" -> "Softmax", "Arrays" -> Association[], "Parameters" ->
Association["Size" -> 10001], "Inputs" ->
Association["Input" -> NeuralNetworks`TensorT[1, {10001}]],
"Outputs" ->
Association["Output" -> NeuralNetworks`TensorT[1, {10001}]]]],
"Connections" -> {
NetPort["Layers", "1", "Inputs", "Input"] ->
NetPort["Inputs", "Input"],
NetPort["Layers", "2", "Inputs", "Input"] ->
NetPort["Layers", "1", "Outputs", "Output"],
NetPort["Layers", "3", "Inputs", "Input"] ->
NetPort["Layers", "2", "Outputs", "Output"],
NetPort["Layers", "4", "Inputs", "Input"] ->
NetPort["Layers", "3", "Outputs", "Output"],
NetPort["Layers", "5", "Inputs", "Input"] ->
NetPort["Layers", "4", "Outputs", "Output"],
NetPort["Layers", "6", "Inputs", "Input"] ->
NetPort["Layers", "5", "Outputs", "Output"],
NetPort["Layers", "7", "Inputs", "Input"] ->
NetPort["Layers", "6", "Outputs", "Output"],
NetPort["Layers", "8", "Inputs", "Input"] ->
NetPort["Layers", "7", "Outputs", "Output"],
NetPort["Layers", "9", "Inputs", "Input"] ->
NetPort["Layers", "8", "Outputs", "Output"],
NetPort["Layers", "10", "Inputs", "Input"] ->
NetPort["Layers", "9", "Outputs", "Output"],
NetPort["Layers", "11", "Inputs", "Input"] ->
NetPort["Layers", "10", "Outputs", "Output"],
NetPort["Layers", "12", "Inputs", "Input"] ->
NetPort["Layers", "11", "Outputs", "Output"],
NetPort["Layers", "13", "Inputs", "Input"] ->
NetPort["Layers", "12", "Outputs", "Output"],
NetPort["Layers", "14", "Inputs", "Input"] ->
NetPort["Layers", "13", "Outputs", "Output"],
NetPort["Layers", "15", "Inputs", "Input"] ->
NetPort["Layers", "14", "Outputs", "Output"],
NetPort["Layers", "16", "Inputs", "Input"] ->
NetPort["Layers", "15", "Outputs", "Output"],
NetPort["Layers", "17", "Inputs", "Input"] ->
NetPort["Layers", "16", "Outputs", "Output"],
NetPort["Layers", "18", "Inputs", "Input"] ->
NetPort["Layers", "17", "Outputs", "Output"],
NetPort["Layers", "19", "Inputs", "Input"] ->
NetPort["Layers", "18", "Outputs", "Output"],
NetPort["Layers", "20", "Inputs", "Input"] ->
NetPort["Layers", "19", "Outputs", "Output"],
NetPort["Layers", "21", "Inputs", "Input"] ->
NetPort["Layers", "20", "Outputs", "Output"],
NetPort["Outputs", "Output"] ->
NetPort["Layers", "21", "Outputs", "Output"]}, "Inputs" ->
Association["Input" -> NeuralNetworks`EncodedType[
NetEncoder["Image",
Association[
"Parameters" ->
Association[
"ImageSize" -> {40, 40}, "ColorSpace" -> "Grayscale",
"ColorChannels" -> 1, "$AugmentationFunction" -> None,
"Parallelize" -> True, "MeanImage" -> None], "Output" ->
NeuralNetworks`ChannelT[1,
NeuralNetworks`TensorT[2, {40, 40}]]]],
NeuralNetworks`ChannelT[1,
NeuralNetworks`TensorT[2, {40, 40}]]]], "Outputs" ->
Association["Output" -> NeuralNetworks`DecodedType[
NetDecoder["Class",
Association[
"Parameters" -> Association["Labels" -> CompressedData["
1:eJwc3VMQ4Eq3BtB/7DO2bdu2bdu2bdu2bdu2bdt3zU3VqspTKi8ddO/+dvwG
bSu0CfC///0vfNL//f/x7zwggQhMEIISjOCEICShCE0Y/iMs4f5dhwhEJBKR
iUJUohGdGMQkFrGJQ1ziEZ8EJCQRiUnCv9tLRnJSkJJUpCYNaUlHejKQkUxk
JgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlGcUpQklKUpgxlKUd5KlCRSlSm
ClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZzWtCSVrSmDW1pR3s60JFOdKYL
XelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBGMJJRjGYMYxnHeCYwkUlMZgpT
mcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclawklWsZg1rWcd6NrCRTWxmC1vZ
xnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCSU5zmDGc5x3kucJFLXOYKV7nG
dW5wk1vc5g53ucd9HvCQRzzmCU95xnNe8JJXvOYNb3nHez7wkU985gtf+cZ3
fvCTX/zmD3/5N/gDEJBABCYIQQlGcEIQklCEJgz/EZZwhCcCEYlEZKIQlWhE
JwYxiUVs4hCXeMQnAQlJRGKSkJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQn
BznJRW7ykJd85KcABSlEYYpQlGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcG
NalFbepQl3rUpwENaURjmtCUZjSnBS1pRWv+PcDb0o72dKAjnehMF7rSje70
oCe96E0f+tKP/gxgIIMYzBCGMozhjGAkoxjNGMYyjvFMYCKTmMwUpjKN6cxg
JrOYzRzmMo/5LGAhi1jMEpayjOWsYCWrWM0a1rKO9WxgI5vYzBa2so3t7GAn
u9jNHvayj/0c4CCHOMwRjnKM45zgJKc4zRnOco7zXOAil7jMFa5yjevc4Ca3
uM0d7nKP+zzgIY94zBOe8oznvOAlr3jNG97yjvd84COf+MwXvvKN7/zgJ7/4
zR/+8u/FH4CABCIwQQhKMIITgpCEIjRh+I+whCM8EYhIJCIThahEIzoxiEks
YhOHuMQjPglISCISk4SkJCM5KUhJKlKThrSkIz0ZyEgmMpOFrGQjOznISS5y
k4e85CM/BShIIQpThKIUozglKEkpSlOGspSjPBWoSCUqU4WqVKM6NahJLWpT
h7rUoz4NaEgjGtOEpjSjOS1oSSta04a2tKM9HehIJzrTha50ozs96EkvetOH
vvSjPwMYyCAGM4ShDGM4IxjJKEYzhrGMYzwTmMgkJjOFqUxjOjOYySxmM4e5
zGM+C1jIIhazhKUsYzkrWMkqVrOGtaxjPRvYyCY2s4WtbGM7O9jJLnazh73s
Yz8HOMghDnOEoxzjOCc4ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zj
Pg94yCMe84SnPOM5L3jJK17zhre84z0f+MgnPvOFr3zjOz/4yS9+84e//Pvo
D0BAAhGYIAQlGMEJQUhCEZow/EdYwhGeCEQkEpGJQlSiEZ0YxCQWsYlDXOIR
nwQkJBGJSUJSkpGcFKQkFalJQ1rSkZ4MZCQTmclCVrKRnRzkJBe5yUNe8pGf
AhSkEIUpQlGKUZwSlKQUpSlDWcpRngpUpBKVqUJVqlGdGtSkFrWpQ13qUZ8G
NKQRjWlCU5rRnBa0pBWtaUNb2tGeDnSkE53pQle60Z0e9KQXvelDX/rRnwEM
ZBCDGcJQhjGcEYxkFKMZw1jGMZ4JTGQSk5nCVKYxnRnMZBazmcNc5jGfBSxk
EYtZwlKWsZwVrGQVq1nDWtaxng1sZBOb2cJWtrGdHexkF7vZw172sZ8DHOQQ
hznCUY5xnBOc5BSnOcNZznGeC1zkEpe5wlWucZ0b3OQWt7nDXe5xnwc85BGP
ecJTnvGcF7zkFa95w1ve8Z4PfOQTn/nCV77xnR/85Be/+cNf/v3wByAggQhM
EIISjOCEICShCE0Y/iMs4QhPBCISichEISrRiE4MYhKL2MQhLvGITwISkojE
JCEpyUhOClKSitSkIS3pSE8GMpKJzGQhK9nITg5ykovc5CEv+chPAQpSiMIU
oSjFKE4JSlKK0pShLOUoTwUqUonKVKEq1ahODWpSi9rUoS71qE8DGtKIxjSh
Kc1oTgta0orWtKEt7WhPBzrSic50oSvd6E4PetKL3vShL/3ozwAGMojBDGEo
wxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jPAhayiMUsYSnL
WM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8BDnKIwxzhKMc4
zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4zwMe8ojHPOEpz3jO
C17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OEv/yb7AhCQQAQmCEEJRnBC
EJJQhCYM/xGWcIQnAhGJRGSiEJVoRCcGMYlFbOIQl3jEJwEJSURikpCUZCQn
BSlJRWrSkJZ0pCcDGclEZrKQlWxkJwc5yUVu8pCXfOSnAAUpRGGKUJRiFKcE
JSlFacpQlnKUpwIVqURlqlCValSnBjWpRW3qUJd61KcBDWlEY5rQlGY0pwUt
aUVr2tCWdrSnAx3pRGe60JVudKcHPelFb/rQl370ZwADGcRghjCUYQxnBCMZ
xWjGMJZxjGcCE5nEZKYwlWlMZwYzmcVs5jCXecxnAQtZxGKWsJRlLGcFK1nF
atawlnWsZwMb2cRmtrCVbWxnBzvZxW72sJd97OcABznEYY5wlGMc5wQnOcVp
znCWc5znAhe5xGWucJVrXOcGN7nFbe5wl3vc5wEPecRjnvCUZzznBS95xWve
8JZ3vOcDH/nEZ77wlW985wc/+cVv/vCXfxP9AQhIIAIThKAEIzghCEkoQhOG
/whLOMITgYhEIjJRiEo0ohODmMQiNnGISzzik4CEJCIxSUhKMpKTgpSkIjVp
SEs60pOBjGQiM1nISjayk4Oc5CI3echLPvJTgIIUojBFKEoxilOCkpSiNGUo
SznKU4GKVKIyVahKNapTg5rUojZ1qEs96tOAhjSiMU1oSjOa04KWtKI1bWhL
O9rTgY50ojNd6Eo3utODnvSiN33oSz/6M4CBDGIwQxjKMIYzgpGMYjRjGMs4
xjOBiUxiMlOYyjSmM4OZzGI2c5jLPOazgIUsYjFLWMoylrOClaxiNWtYyzrW
s4GNbGIzW9jKNrazg53sYjd72Ms+9nOAgxziMEc4yjGOc4KTnOI0ZzjLOc5z
gYtc4jJXuMo1rnODm9ziNne4yz3u84CHPOIxT3jKM57zgpe84jVveMs73vOB
j3ziM1/4yje+84Of/OI3f/jLv0W+AAQkEIEJQlCCEZwQhCQUoQnDf4QlHOGJ
QEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBCEpGYJCQlGclJQUpSkZo0pCUd6clA
RjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEKUZgiFKUYxSlBSUpRmjKUpRzlqUBF
KlGZKlSlGtWpQU1qUZs61KUe9WlAQxrRmCY0pRnNaUFLWtGaNrSlHe3pQEc6
0ZkudKUb3elBT3rRmz70pR/9GcBABjGYIQxlGMMZwUhGMZoxjGUc45nARCYx
mSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZ
LWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkr
XOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS98
5Rvf+cFPfvGbP/zl3wJ/AAISiMAEISjBCE4IQhKK0IThP8ISjvBEICKRiEwU
ohKN6MQgJrGITRziEo/4JCAhiUhMEpKSjOSkICWpSE0a0pKO9GQgI5nITBay
ko3s5CAnuchNHvKSj/wUoCCFKEwRilKM4pSgJKUoTRnKUo7yVKAilahMFapS
jerUoCa1qE0d6lKP+jSgIY1oTBOa0ozmtKAlrWhNG9rSjvZ0oCOd6EwXutKN
7vSgJ73oTR/60o/+DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3p
zGAms5jNHOYyj/ksYCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3s
YCe72M0e9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zg
Jre4zR3uco/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAn
v/jNH/7yr7gnAAEJRGCCEJRgBCcEIQlFaMLwH2EJR3giEJFIRCYKUYlGdGIQ
k1jEJg5xiUd8EpCQRCQmCUlJRnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCT
XOQmD3nJR34KUJBCFKYIRSlGcUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa
1KYOdalHfRrQkEY0pglNaUZzWtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170
pg996Ud/BjCQQQxmCEMZxnBGMJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxm
DnOZx3wWsJBFLGYJS1nGclawklWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYP
e9nHfg5wkEMc5ghHOcZxTnCSU5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53
ucd9HvCQRzzmCU95xnNe8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD3/5
V9gXgIAEIjBBCEowghOCkIQiNGH4j7CEIzwRiEgkIhOFqEQjOjGISSxiE4e4
xCM+CUhIIhKThKQkIzkpSEkqUpOGtKQjPRnISCYyk4WsZCM7OchJLnKTh7zk
Iz8FKEghClOEohSjOCUoSSlKU4aylKM8FahIJSpThapUozo1qEktalOHutSj
Pg1oSCMa04SmNKM5LWhJK1rThra0oz0d6EgnOtOFrnSjOz3oSS9604e+9KM/
AxjIIAYzhKEMYzgjGMkoRjOGsYxjPBOYyCQmM4WpTGM6M5jJLGYzh7nMYz4L
WMgiFrOEpSxjOStYySpWs4a1rGM9G9jIJjazha1sYzs72MkudrOHvexjPwc4
yCEOc4SjHOM4JzjJKU5zhrOc4zwXuMglLnOFq1zjOje4yS1uc4e73OM+D3jI
Ix7zhKc84zkveMkrXvOGt7zjPR/4yCc+84WvfOM7P/jJL37zh7/8K+oNQEAC
EZggBCUYwQlBSEIRmjD8R1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQk
EYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQ
hSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGN
aUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZ
wlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nC
UpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJR
jnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGfBzzkEY95wlOe
8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5w1/+FfQHICCBCEwQghKM
4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJ
SE4KUpKK1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUo
TglKUorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhO
C1rSita0oS3taE8HOtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4I
RjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpW
sorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5y
itOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc84SnPeM4LXvKK
17zhLe94zwc+8onPfOEr3/jOD37yi9/84S//NvMEICCBCEwQghKM4IQgJKEI
TRj+IyzhCE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK
1KQhLelITwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorS
lKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0
oS3taE8HOtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0Yxh
LOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt
61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4Szn
OM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc84SnPeM4LXvKK17zhLe94
zwc+8onPfOEr3/jOD37yi9/84S//NvIFICCBCEwQghKM4IQgJKEITRj+Iyzh
CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI
TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP
BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H
OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm
MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay
ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ
y1zhKte4zg1ucovb3OEu97jPAx7yiMc84SnPeM4LXvKK17zhLe94zwc+8onP
fOEr3/jOD37yi9/84S//NvEGICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJ
yEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonM
ZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpU
oSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznSh
K93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq
05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb
2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4
zg1ucovb3OEu97jPAx7yiMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jO
D37yi9/84S//NvAHICCBCEwQghKM4IQgJKEITRj+IyzhCE8EIhKJyEQhKtGI
TgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelITwYykonMZCEr2chO
DnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShPBSpSicpUoSrVqE4N
alKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznShK93oTg96
0ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYy
i9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL
3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb
3OEu97jPAx7yiMc84SnPeM4LXvKK17zhLe94zwc+8onPfOEr3/jOD37yi9/8
4S//wjsCEJBABCYIQQlGcEIQklCEJgz/EZZwhCcCEYlEZKIQlWhEJwYxiUVs
4hCXeMQnAQlJRGKSkJRkJCcFKUlFatKQlnSkJwMZyURmspCVbGQnBznJRW7y
kJd85KcABSlEYYpQlGIUpwQlKUVpylCWcpSnAhWpRGWqUJVqVKcGNalFbepQ
l3rUpwENaURjmtCUZjSnBS1pRWva0JZ2tKcDHelEZ7rQlW50pwc96UVv+tCX
fvRnAAMZxGCGMJRhDGcEIxnFaMYwlnGMZwITmcRkpjCVaUxnBjOZxWzmMJd5
zGcBC1nEYpawlGUsZwUrWcVq1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s
5wAHOcRhjnCUYxznBCc5xWnOcJZznOcCF7nEZa5wlWtc5wY3ucVt7nCXe9zn
AQ95xGOe8JRnPOcFL3nFa97wlne85wMf+cRnvvCVb3znBz/5xW/+8Jd/wT0B
CEggAhOEoAQjOCEISShCE4b/CEs4whOBiEQiMlGISjSiE4OYxCI2cYhLPOKT
gIQkIjFJSEoykpOClKQiNWlISzrSk4GMZCIzWchKNrKTg5zkIjd5yEs+8lOA
ghSiMEUoSjGKU4KSlKI0ZShLOcpTgYpUojJVqEo1qlODmtSiNnWoSz3q04CG
NKIxTWhKM5rTgpa0ojVtaEs72tOBjnSiM13oSje604Oe9KI3fehLP/ozgIEM
YjBDGMowhjOCkYxiNGMYyzjGM4GJTGIyU5jKNKYzg5nMYjZzmMs85rOAhSxi
MUtYyjKWs4KVrGI1a1jLOtazgY1sYjNb2Mo2trODnexiN3vYyz72c4CDHOIw
RzjKMY5zgpOc4jRnOMs5znOBi1ziMle4yjWuc4Ob3OI2d7jLPe7zgIc84jFP
eMoznvOCl7ziNW94yzve84GPfOIzX/jKN77zg5/84jd/+Mu/0K4ABCQQgQlC
UIIRnBCEJBShCcN/hCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJQEISkZgk
JCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpRmCIU
pRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBDGtGYJjSl
Gc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAGMZghDGUY
wxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnL
WcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5
wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nB
S17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OVfYF8AAhKIwAQhKMEITghC
EorQhOE/whKO8EQgIpGITBSiEo3oxCAmsYhNHOISj/gkICGJSEwSkpKM5KQg
JalITRrSko70ZCAjmchMFrKSjezkICe5yE0e8pKP/BSgIIUoTBGKUozilKAk
pShNGcpSjvJUoCKVqEwVqlKN6tSgJrWoTR3qUo/6NKAhjWhME5rSjOa0oCWt
aE0b2tKO9nSgI53oTBe60o3u9KAnvehNH/rSj/4MYCCDGMwQhjKM4YxgJKMY
zRjGMo7xTGAik5jMFKYyjenMYCazmM0c5jKP+SxgIYtYzBKWsozlrGAlq1jN
GtayjvVsYCOb2MwWtrKN7exgJ7vYzR72so/9HOAghzjMEY5yjOOc4CSnOM0Z
znKO81zgIpe4zBWuco3r3OAmt7jNHe5yj/s84CGPeMwTnvKM57zgJa94zRve
8o73fOAjn/jMF77yje/84Ce/+M0f/vIvrDMAAQlEYIIQlGAEJwQhCUVowvAf
YQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlGclKQklSkJg1p
SUd6MpCRTGQmC1nJRnZykJNc5CYPeclHfgpQkEIUpghFKUZxSlCSUpSmDGUp
R3kqUJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa0JJWtKYNbWlH
ezrQkU50pgtd6UZ3etCTXvSmD33pR38GMJBBDGYIQxnGcEYwklGMZgxjGcd4
JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCSVaxmDWtZx3o2
sJFNbGYLW9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJTnOYMZznHeS5w
kUtc5gpXucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle85g1vecd7PvCR
T3zmC1/5xnd+8JNf/OYPf/kX1BuAgAQiMEEISjCCE4KQhCI0YfiPsIQjPBGI
SCQiE4WoRCM6MYhJLGITh7jEIz4JSEgiEpOEpCQjOSlISSpSk4a0pCM9GchI
JjKThaxkIzs5yEkucpOHvOQjPwUoSCEKU4SiFKM4JShJKUpThrKUozwVqEgl
KlOFqlSjOjWoSS1qU4e61KM+DWhIIxrThKY0ozktaEkrWtOGtrSjPR3oSCc6
04WudKM7PehJL3rTh770oz8DGMggBjOEoQxjOCMYyShGM4axjGM8E5jIJCYz
halMYzozmMksZjOHucxjPgtYyCIWs4SlLGM5K1jJKlazhrWsYz0b2MgmNrOF
rWxjOzvYyS52s4e97GM/BzjIIQ5zhKMc4zgnOMkpTnOGs5zjPBe4yCUuc4Wr
XOM6N7jJLW5zh7vc4z4PeMgjHvOEpzzjOS94ySte84a3vOM9H/jIJz7zha98
4zs/+MkvfvOHv/wL6Q5AQAIRmCAEJRjBCUFIQhGaMPxHWMIRnghEJBKRiUJU
ohGdGMQkFrGJQ1ziEZ8EJCQRiUlCUpKRnBSkJBWpSUNa0pGeDGQkE5nJQlay
kZ0c5CQXuclDXvKRnwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapR
nRrUpBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlDW9rRng50pBOd6UJXutGd
HvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNYxjGeCUxkEpOZwlSmMZ0Z
zGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rWsZ4NbGQTm9nCVraxnR3s
ZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5xngtc5BKXucJVrnGdG9zk
Fre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGeD3zkE5/5wle+8Z0f/OQX
v/nDX/4F9AcgIIEITBCCEozghCAkoQhNGP4jLOEITwQiEonIRCEq0YhODGIS
i9jEIS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL
3OQhL/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova
1KEu9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970
oS/96M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxh
LvOYzwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv
+9jPAQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73
uM8DHvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M4PfvKL3/zhL/+a
cwQgIIEITBCCEozghCAkoQhNGP4jLOEITwQiEonIRCEq0YhODGISi9jEIS7x
iE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQhL/nI
TwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu9ahP
AxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/96M8A
BjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOYzwIW
sojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jPAQ5y
iMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8DHvKI
xzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M4PfvKL3/zhL/8a8wQgIIEI
TBCCEozghCAkoQhNGP4jLOEITwQiEonIRCEq0YhODGISi9jEIS7xiE8CEpKI
xCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQhL/nITwEKUojC
FKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu9ahPAxrSiMY0
oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/96M8ABjKIwQxh
KMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOYzwIWsojFLGEp
y1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jPAQ5yiMMc4SjH
OM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8DHvKIxzzhKc94
zgte8orXvOEt73jPBz7yic984Svf+M4PfvKL3/zhL/+acgUgIIEITBCCEozg
hCAkoQhNGP4jLOEITwQiEonIRCEq0YhODGISi9jEIS7xiE8CEpKIxCQhKclI
TgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQhL/nITwEKUojCFKEoxShO
CUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu9ahPAxrSiMY0oSnNaE4L
WtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/96M8ABjKIwQxhKMMYzghG
MorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOYzwIWsojFLGEpy1jOClay
itWsYS3rWM8GNrKJzWxhK9vYzg52sovd7GEv+9jPAQ5yiMMc4SjHOM4JTnKK
05zhLOc4zwUuconLXOEq17jODW5yi9vc4S73uM8DHvKIxzzhKc94zgte8orX
vOEt73jPBz7yic984Svf+M4PfvKL3/zhL/8a8gUgIIEITBCCEozghCAkoQhN
GP4jLOEITwQiEonIRCEq0YhODGISi9jEIS7xiE8CEpKIxCQhKclITgpSkorU
pCEt6UhPBjKSicxkISvZyE4OcpKL3OQhL/nITwEKUojCFKEoxShOCUpSitKU
oSzlKE8FKlKJylShKtWoTg1qUova1KEu9ahPAxrSiMY0oSnNaE4LWtKK1rSh
Le1oTwc60onOdKEr3ehOD3rSi970oS/96M8ABjKIwQxhKMMYzghGMorRjGEs
4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOYzwIWsojFLGEpy1jOClayitWsYS3r
WM8GNrKJzWxhK9vYzg52sovd7GEv+9jPAQ5yiMMc4SjHOM4JTnKK05zhLOc4
zwUuconLXOEq17jODW5yi9vc4S73uM8DHvKIxzzhKc94zgte8orXvOEt73jP
Bz7yic984Svf+M4PfvKL3/zhL/+acQYgIIEITBCCEozghCAkoQhNGP4jLOEI
TwQiEonIRCEq0YhODGISi9jEIS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhP
BjKSicxkISvZyE4OcpKL3OQhL/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8F
KlKJylShKtWoTg1qUova1KEu9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc6
0onOdKEr3ehOD3rSi970oS/96M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYy
iclMYSrTmM4MZjKL2cxhLvOYzwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJ
zWxhK9vYzg52sovd7GEv+9jPAQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconL
XOEq17jODW5yi9vc4S73uM8DHvKIxzzhKc94zgte8orXvOEt73jPBz7yic98
4Svf+M4PfvKL3/zhL/8a8QYgIIEITBCCEozghCAkoQhNGP4jLOEITwQiEonI
RCEq0YhODGISi9jEIS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxk
ISvZyE4OcpKL3OQhL/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylSh
KtWoTg1qUova1KEu9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr
3ehOD3rSi970oS/96M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrT
mM4MZjKL2cxhLvOYzwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vY
zg52sovd7GEv+9jPAQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jO
DW5yi9vc4S73uM8DHvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M4P
fvKL3/zhL/+acAcgIIEITBCCEozghCAkoQhNGP4jLOEITwQiEonIRCEq0YhO
DGISi9jEIS7xiE8CEpKIxCQhKclITgpSkorUpCEt6UhPBjKSicxkISvZyE4O
cpKL3OQhL/nITwEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1q
Uova1KEu9ahPAxrSiMY0oSnNaE4LWtKK1rShLe1oTwc60onOdKEr3ehOD3rS
i970oS/96M8ABjKIwQxhKMMYzghGMorRjGEs4xjPBCYyiclMYSrTmM4MZjKL
2cxhLvOYzwIWsojFLGEpy1jOClayitWsYS3rWM8GNrKJzWxhK9vYzg52sovd
7GEv+9jPAQ5yiMMc4SjHOM4JTnKK05zhLOc4zwUuconLXOEq17jODW5yi9vc
4S73uM8DHvKIxzzhKc94zgte8orXvOEt73jPBz7yic984Svf+M4PfvKL3/zh
L/+LZ/wTkEAEJghBCUZwQhCSUP/XMD1sAQEAAADrZdu2bdu2bdu2bdu2bdu2
bdcO+4QRmjCEJRzhiUBEIhGZKEQlGtGJQUxiEZs4xCUe8UlAQhKRmCQkJRnJ
SUFKUpGaNKQlHenJQEYykZksZCUb2clBTnKRmzzkJR/5KUBBClGYIhSlGMUp
QUlKUZoylKUc5alARSpRmSpUpRrVqUFNalGbOtSlHvVpQEMa0ZgmNKUZzWlB
S1rRmja0pR3t6UBHOtGZLnSlG93pQU960Zs+9KUf/RnAQAYxmCEMZRjDGcFI
RjGaMYxlHOOZwEQmMZkpTGUa05nBTGYxmznMZR7zWcBCFrGYJSxlGctZwUpW
sZo1rGUd69nARjaxmS1sZRvb2cFOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5x
mjOc5RznucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGa
N7zlHe/5wEc+8ZkvfOUb3/nBT37xmz/85R8BEvhPQAIRmCAEJRjBCUFIQhGa
MIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBCEpGYJCQlGclJQUpSkZo0
pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEKUZgiFKUYxSlBSUpRmjKU
pRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrRmCY0pRnNaUFLWtGaNrSl
He3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGYIQxlGMMZwUhGMZoxjGUc
45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r
2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5
wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nA
Rz7xmS985Rvf+cFPfvGbP/zlHwES+k9AAhGYIAQlGMEJQUhCEZowhCUc4YlA
RCIRmShEJRrRiUFMYhGbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBG
MpGZLGQlG9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUq
UZkqVKUa1alBTWpRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tKUd7elARzrR
mS50pRvd6UFPetGbPvSlH/0ZwEAGMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZ
KUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZkt
bGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc
5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zl
G9/5wU9+8Zs//OUfARL5T0ACEZggBCUYwQlBSEIRmjCEJRzhiUBEIhGZKEQl
GtGJQUxiEZs4xCUe8UlAQhKRmCQkJRnJSUFKUpGaNKQlHenJQEYykZksZCUb
2clBTnKRmzzkJR/5KUBBClGYIhSlGMUpQUlKUZoylKUc5alARSpRmSpUpRrV
qUFNalGbOtSlHvVpQEMa0ZgmNKUZzWlBS1rRmja0pR3t6UBHOtGZLnSlG93p
QU960Zs+9KUf/RnAQAYxmCEMZRjDGcFIRjGaMYxlHOOZwEQmMZkpTGUa05nB
TGYxmznMZR7zWcBCFrGYJSxlGctZwUpWsZo1rGUd69nARjaxmS1sZRvb2cFO
drGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5RznucBFLnGZK1zlGte5wU1u
cZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5wEc+8ZkvfOUb3/nBT37x
mz/85R8BEvtPQAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIR
mzjEJR7xSUBCEpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGb
POQlH/kpQEEKUZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs6
1KUe9WlAQxrRmCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70
pR/9GcBABjGYIQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxl
HvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf
+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73
ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/zlHwGS
+E9AAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQlHvFJ
QEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf+SlA
QQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71aUBD
GtGYJjSlGc1pQUta0Zo2tKUd7elARzrRmS50pRvd6UFPetGbPvSlH/0ZwEAG
MZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhax
mCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGY
IxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8Zgn
POUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5wU9+8Zs//OUfAZL6T0ACEZgg
BCUYwQlBSEIRmjCEJRzhiUBEIhGZKEQlGtGJQUxiEZs4xCUe8UlAQhKRmCQk
JRnJSUFKUpGaNKQlHenJQEYykZksZCUb2clBTnKRmzzkJR/5KUBBClGYIhSl
GMUpQUlKUZoylKUc5alARSpRmSpUpRrVqUFNalGbOtSlHvVpQEMa0ZgmNKUZ
zWlBS1rRmja0pR3t6UBHOtGZLnSlG93pQU960Zs+9KUf/RnAQAYxmCEMZRjD
GcFIRjGaMYxlHOOZwEQmMZkpTGUa05nBTGYxmznMZR7zWcBCFrGYJSxlGctZ
wUpWsZo1rGUd69nARjaxmS1sZRvb2cFOdrGbPexlH/s5wEEOcZgjHOUYxznB
SU5xmjOc5RznucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFL
XvGaN7zlHe/5wEc+8ZkvfOUb3/nBT37xmz/85R8BkvlPQAIRmCAEJRjBCUFI
QhGaMIQlHOH5D2hVV9U=
"], "Dimensions" -> 10001], "Input" ->
NeuralNetworks`TensorT[1, {10001}]]],
NeuralNetworks`TensorT[1, {10001}]]]],
NeuralNetworks`NetChain`PackagePrivate`opart$$,
NeuralNetworks`NetChain`PackagePrivate`part$$,
NeuralNetworks`NetChain`PackagePrivate`selected$$ = Null},
DynamicBox[ToBoxes[
Column[{
EventHandler[
NeuralNetworks`NetChain`PackagePrivate`grid$$, "MouseClicked" :>
If[
ListQ[
NeuralNetworks`NetChain`PackagePrivate`part$$ =
MouseAnnotation[]],
If[NeuralNetworks`NetChain`PackagePrivate`opart$$ ===
NeuralNetworks`NetChain`PackagePrivate`part$$,
NeuralNetworks`NetChain`PackagePrivate`selected$$ = Null;
NeuralNetworks`NetChain`PackagePrivate`opart$$ = Null,
NeuralNetworks`NetChain`PackagePrivate`selected$$ =
Part[NeuralNetworks`NetChain`PackagePrivate`assoc$$,
Apply[
Sequence, NeuralNetworks`NetChain`PackagePrivate`part$$]];
NeuralNetworks`NetChain`PackagePrivate`opart$$ =
NeuralNetworks`NetChain`PackagePrivate`part$$; Null];
Null]],
NeuralNetworks`NetChain`PackagePrivate`fmtSelected[
NeuralNetworks`NetChain`PackagePrivate`selected$$,
NeuralNetworks`NetChain`PackagePrivate`part$$]}, Spacings -> 1],
StandardForm],
ImageSizeCache->{307., {168.4169921875, 173.5830078125}},
TrackedSymbols:>{NeuralNetworks`NetChain`PackagePrivate`selected$$}],
DynamicModuleValues:>{}],
BaselinePosition->Automatic], "]"}]}],
False],
Deploy],
LineBreakWithin->False]], "Output",
CellChangeTimes->{{3.676912832853613*^9, 3.6769128550638123`*^9},
3.67691468707187*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"samples", "[", "n_", "]"}], ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\\"", "<>",
RowBox[{"ToString", "[", "x", "]"}]}], "]"}], ";",
RowBox[{"Import", "@",
RowBox[{"RandomChoice", "@",
RowBox[{"FileNames", "[", "\"\<*.gif\>\"", "]"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"RandomInteger", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "10000"}], "}"}], ",", "n"}], "]"}]}], "}"}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.676914854675058*^9, 3.676914856391246*^9}, {
3.676914923675128*^9, 3.67691499705164*^9}, {3.6769150509930077`*^9,
3.676915117313529*^9}, {3.6769153217750998`*^9, 3.676915340969047*^9}, {
3.676915384734446*^9, 3.6769154741877728`*^9}, {3.676915632905837*^9,
3.676915659611058*^9}, {3.676915741295128*^9, 3.6769157709007*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"example", "=",
RowBox[{"samples", "[", "10", "]"}]}]], "Input",
CellChangeTimes->{{3.6769160118985033`*^9, 3.676916023843396*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztmD9IHVsQxi95IFbyEKwE4VlYiJWFBCzERghY3WBlIbloQoQYNAEJYiNW
gmBnoZ2F2FgINhY2goVgI1gIdqaxsbGwsDj5Zb9kmJz9k7v3Gn0EP3A5d/fs
nO/MfDNn1v9qH6tvX1QqlU+tXKpv5ofn5t58ef0vP8ZmPr1/NzM1+Wrm89S7
qbmXtX+42f/j7/s4POMZ+bi9vX1qCr/ga4L7+/unJvIdMLm6ujIXPWE2weT6
+vrm5sbHa2Njo+LAnPBYAb1O4O+0tLRUsjAwMMDTRwho5urC8PAwE9rb209P
T+fn53WTO/jzD5Gp1WoFfHgazT8/P9ej1dXV8BBBxOEKEHssYFKPpJnT19cX
mguiSbeAyeDgYOa7bIQ03N/f92ybD+Ld3V0Bn0jefiPg8vLSjBgrMazTq3nI
JLO0tJQ3n9BoOeSNl4gRfuY6Ojoa2dS4sSDyeltbm+xMTk4WzFxbWxsbG0PG
XV1d3hs4CqdlRlCFqzFWmQ73e+zv708L3i9NoNOsOjs7QyK8BljZivp5cXHh
JTo7O2tMpqendXNoaMiWrlar+IpXWN08s7e3ZzbLRtDm52nb7q+srISfMmYA
vci9OpofKohyy8jICFvGyPHxcZqVxkiaChl+jbiPEU5Os9ra2lKO1w8WWl9f
Z7C4uIiSMXJ0dGS7iyj5tSCTqUObRm7aoRBKSmt3d5e9aKx8NyVIbOlX8lJD
Pj87O8sMYllpWdAJIvl+cHBgBrmS7zKoayYlv+LJycmDSAsxiMmHBOg5JPFi
rbQpxa61tdXWoknwE3jLF3m/hVJBJIURVUikRQnFgsp1phGednd323I0VyHl
B5TZTBA1LepvweHhYXqyksKvUkmd15JW80VexMh3vbKwsIAFAop9vzXGvb29
Ms7ZtLy8XGAzKvIihuWy9YEaRdcdEjmpYBIFz0pSiUSunzxKS0t2opmhbmlp
aZyDuoIrDtvb294Iq1BAfHpGyWjRKa4PZYOo+Rx5dCPGysMbTLNCnH5ynrTK
BpH6QEXd3Ny0U5U7UdZwRwMKyMTERHo5m69WUKmtI6mxIEKJtYgUSpYFxdQb
ocez7AMiRrDwcEjcBRkSx2TmnVm2PggWICKoDhCe0RxoR4I3pD9kjBK5o0FP
T08pVpqpAFGXVB+Arw9STh4rAycO36eVLBBlntZJyaAUUwmVHV8fGECM4q8a
EoEMzWTy210UQEvbRjhTZE29ltoq+5Yx8HR8fLyAjGmvYfhwo16+0CvJ/wqi
lA+JW3Q656GjoyPzG7Dhz1W1mhQrNSRyBcR2dnb4tCl2CxMia2QQekBODKIW
t05oI6oGQjEHAx2st6Mt+GrZ/L9lzPOSdB4T+sPoRXNLkwTSsP6BKy2KPrI8
GWtmhLRb/hzsBFQl91ANB49GJvz0le9vAQU5XeQfjZInFpIKHx0iHIgNVOaH
gogZJYqntQr/B+hr5alZPOMZfyG+AXD3SeA=
"], {{0, 50}, {50, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{50, 50},
PlotRange->{{0, 50}, {0, 50}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztlq9rAmEYx2ULMwgOTAbDinBJEASTuGCY0WExiJPdZEVFB8eBzWbZn7AL
JoPBsGIY1jXBsGY4uGAZWMal7bt7tpfX+8GmvHdbuA94vIrweZ/nfZ7nvbNm
p3JzFIlE+lE8KlfKea93pV6e4ku13b9tteXri/ad3JJ7+eYxfpS+Pp/r95CQ
EH94dSMYdcSNNw8CUFc8EKt+dKNUKp244cyDaZpi9zMajSCypSKTyfAZqFoM
BgOx6m63G4vFbOpOpxN1UCgUNpuNQHWj0SA1HzsCNAyjsctwOFwulwLVsixD
zXuxVlVV1/WXXfALVb6oQye1LeGIGrnlFcJrDNTr9Xg8zqKmRa1WG4/HJocf
dkVRUM+2qJPJZDabFSvyAoEnEgnnk58As9mMnmLV9x7kPRBrdz1Qip3AGt3N
Gp9ALwjPA8FnACJJkmwTAFWhaZofatbIYLFY0MAnKY04ZANb0t0wLNg0OEC9
Wq2oujDtc7kcC9b1HnQFTXSAervdkhG9lk6n2cjFPMdmfFUjatwvzqutXC5j
tOIPD95o3yBvvzfixQk3xbMFLg6cKdnZE2qxVwkDFQVjsVhEYlOpFOspZoea
xWL+xF7qyWSCw2U6UuOg0Vw5C5zCer0WGy9tcjqdQo0ASUqRYtSju58sELIf
dxlT89ODqno+n/uh44ECr2QSB+xQo8EPOL69QIWjd5YcgUXtBIHj/QGVH7wa
oKQx3P5EHRLyz/kAdfe82A==
"], {{0, 41}, {41, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{41, 41},
PlotRange->{{0, 41}, {0, 41}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztVj2LGlEUHZLC6QxoZyEBixQ2QgorIWUQBDcELWx2zWSJhQE3GAN2Fv4D
O0vB1lqsxMpSBCsbC0GwCthMYU7mZi+XeTNvZtyEJeABZT7eu+d+nHvfvL77
evP5hWEYDyb+bm6/v2u1bn98eIWbj82HL/dN69P75jfr3mrl717i4Zs/v9/X
5yuuuOJZ8fMR+/3+dDodDofj8civnm7/5A+9V0+n9oOhIJPJlEql9Xp9gTXP
WGBNZdEDu1CCi4PCXtRuuVxyRMPhsFAoLBYLtg8gxk6nU61W8/k8P9fXQsV0
Ou12u6r/nojFYnSBNfV6vVwuR+KVayRdsVicz+f8yrZthE++jcfjwWDQ6/WI
ZTKZuPzU86pvKd5AVwm73S4ej6sJ0UhaMqKO2WzW5bDtgC7kRr4l4/1+/7JT
VVUjshfJAsrKk4RmCPnMUbuyWqlUiCiZTNKFrKYfyJr9CLIZXr2QInGZpilF
GziOPAEH9B09Go1oZSKRwC2pgkgpP2FY9BQSYKEWkHvxELyYA8yr4eIkvHXg
6UbcgcyeClqAESQFrOGVMiYfXM1iOiCpYHDRw81mg3DkzOSyAhCkaicQtD6d
TsuokQoOlj2UYF2xjEPKiZVMt3wAkSmZQFdlCalUikrM7m232wjROmBXYSTt
QF9cdo94eSXKEdhHqgxUGZ/9q4a3CBlVdimQk0MzgVn8VOeiCwNez8M5cAvK
BxHin0ecuivM5PHqdQMpogskBLN6NpshCRRvu91uNBpo+Vqthu8Qy7Lk4YWW
CWwKKTbWgx5Yhkg9rUUarTg9XVVDg+dyOZm91WqFePEZg/Ou7eAsWsnVU5GA
9rl4718BckXf4fKhGtq/9vAZM3DFFf8LfgFQnvFj
"], {{0, 40}, {40, 0}}, {0,
255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{40, 40},
PlotRange->{{0, 40}, {0, 40}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt0jHOZGcZROEfTEDIFrwLEgJCUiMWYMuDRTJIYyTEbtgpzBYs6vKdq+85
0u1W36BVVe/59oe/f/fXX398fPz8268f333/zz9++fL9v/78u68//vL557/9
9PnTj3/6/I9PP3368vsfvvn68g+/+vj499fv33wAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAuJz/XPKgyWkvOHg3p53g392cdoJ/d3PaCf7dzWkn+Hc3
p53g392cdoJ/d3PaCf7dzWkn+Hc3p53g392cdoJ/d3PaCf7dzWkn+Hc3p53g
392cdoJ/d3PaCf7dzWkn+Hc3p53g392cdoJ/d3Paif+nL6f7vLXrk5ze/a03
uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03
uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03
uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03
uanrk5ze/a03uanrk5ze/a03uanrk5ze/a03Wee7JduT/13e8Imusv3v2U47
9lb/ytn419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9Ddddy9n419tw3bWcjX+9
Ddddy9n419tw3bWcjX+9Ddddy9n419tw3fUJqvnqd0UPvuAk/MNJ+IeT8A8n
4R9Owj+chH84Cf9wEv7hJPzDSfiHk/APJ+EfTsI/nIR/OAn/cBL+4ST8w0n4
h19K1ZlqLuxY3rjsHweblG9czoYN5RuXs2FD+cblbNhQvnE5GzaUb1zOhg3l
G5ezYUP5xuVs2FC+cTkbNpRvXM6GDeUbl7NhQ/nG5WzYUL5xORs2lG9czoYN
5RuXs2FD+cblbNhQvnE5GzaUb1zOhg3lG5ezYUP5xuVs2FC+cTkbNpRvXM6G
DeUbl7NhQ/nG5WzYUL5xORs2lG9czoYN5RuXs2FD+cblbNhQvnE5GzaUb1zO
hg3lG5ezYUP5xuVs2FC+cTkbNpRvXM6GDeUbl7NhQ/nG5WzYUL5xORs2lG9c
zoYd9fuWswHAq/gvXyUNMg==
"], {{0, 317}, {160, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{160, 317},
PlotRange->{{0, 160}, {0, 317}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztlrGLWkEQxh8JSLCQwyogiKmuEImVWNikkgg2xoCd3hGjaV7AE0IQrPwL
BAtLCwsbW+3FxtLOSmxsBEG45qqXLztxmKye93yaVPsDl93H7sy3szO7vrv/
nvv6yrKshzdocnc/PtRqdz8/3WDw2X74VrHLXz7a9XKlXEvev8bH939+v/uO
wWAwGAz/hkcF9Z8UGKK90CwsbDYb+WW32+ELWva7Wq3Y9dXRvJOA67pwGSUo
GY1GlzhqNBq2bRcKhVgslk6nS6VSs9msVCqBQGA6nfr9/lwu50YPJgyHQx7C
mqXQpmWzWRi0zgQyqFOv192IYdgC9PT7fc1sJpOhzmQyYbXz+Xw8HiMmkUiE
Pvp8PpZB0PCsBKPkX6/XNEylUnJf3CEN0rLmReohbm9vkQbeyoryFkZw3KSB
jLfbbbSIA5vdbreDwaDVavHaYrEYDoelkk6n40EDgdNBC/va7pCT1JEbxGQc
k1wul2wUjgqdh7AgJnRMiUTCp9DS5sRaTI7H46gm7f7xfOnNZjPqcK5ywnS7
XeslcEBvFeijtNmsh7sRW+CYI1ukl2QyqWUCCIVCRyUhRAEFJniLiYb1d/nA
Pg4OHQ6dnPkcWBUMBo/u2o2GxWLh7IuaDaKlyFsqZ5BUuz2HejAfu4CG5xRW
q1U3SnjXlirqQzvwvlwukZ+8BKX9Ynw0TghYK+SXfD4vDygajVJuyMtEcjQ+
DNbi5sFdRLJP1Lh2RTj7IjqsaN4UXkPqy78uDB5EPEC4G+m4GczkGJ6m1+tJ
jzIsEqQBP6BHo81bJp2cV2fVNWIILwgmXnz0ySbcoXzw/MnX3Nm/XyesXeWv
nbQm/zo6Kise9zgX3KgueRJIVf/BtcFgMBgMBoNnfgFiSJaw
"], {{0, 47}, {47,
0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{47, 47},
PlotRange->{{0, 47}, {0, 47}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztly+oWlEcxy9beMMym0EQJgZ5zSAsiQPLMAhvLonhPeceQ3iCbzCGYLMY
xCYYDBaTxSAmg2CxiEWwGASrYDIY3j57Z16cf67X34HBxr7g5aj3d76/8/t/
3txlbz6/MAzj8RWPm9tv73K52+8fnHz5+PD45f4h/en9w9f0fTr39u4lP17/
+vxcP/3HP4pyuVytVmu12nK5/GOk9Xq92Wy2Wq1OpxMIBPx+P+v1em0tJY5D
Nm80GhyzVCoVCoVsNptKpRKJRCwWC4fDDocDfc6yg3a73ev1hsPhZDKZz+dY
zFpqsVjMZrPpdGr8jqstHM/gl9FotNlsdmVXqxUUEA0GA6yEufAR+ufzefRP
JpPRaDQSiYzH41PsHo/HsAf03JM9fMfUmbXL5eKJ5uh2it3r9dqhxvuHsjbV
Btj2KPvhm8puPIvFIpFAPGBVvLNndvvsRALewU3rLcwdoMD4breb0xFjKtjM
fzdbWGuuTA3i8Tje73a7u+yEIl67KGeVhpsdWL8PYygUYkHgkUFEGoxnpXSg
zIhJYSHLOLVNQQs34QtZZaNQWPxL5FcqFdzq8/ks2NmELBawA7LbjAEZCPjD
1LYGxlcLyosONZpnMhnx2ZHVYQdUSLJbxo7djJ0EFIDAELNT5MW8SmdqzqnC
eBbMA5pnJ24pjLJCQZ0R8yq1aegWPfEsu9Pp1FEgGAzSymXsCBp6lqfdXMpu
5jsu02THdOKYRw1NdsARZOxPzx1EzK4ExVGnya6gJjFZ0jFL6FCDfr8vPjtj
mJhXGY0dxOxqrJIZX0lhPYHZlQgzpPjsCsxIdm4uRwG7OdLLwBRtFpBLQcxo
FltalZidfNFkZ/xTg6XA+1Rp7kfK8lcn8HqLo3rSZMUtXj/qAPO5nUvELtTL
asDQgezUJk5ti6lp38yNXBmYBA67CfrvXfQEUJuY60OstiC61EKHzo4+9q+E
fwV+AFZC2gk=
"], {{0, 42}, {42, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{42, 42},
PlotRange->{{0, 42}, {0, 42}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJxTTMoPSmNiYGAo5gASQYnljkVFiZXBAkBOaF5xZnpeaopnXklqemqRRRIz
UFADikHs/6NgFNAMDFQCY0ACA2UvPd2Ay14i3QBXsH//fqrbixXw8PDAnfT5
82da+HdQ2QsBA2KvgIDAQNkL8fJA2UsGoJa979+/H7V31N5Re0ftHbV31N5R
e0ftHbV31N7hbS8llkL6ZWTYCwD0KXwj
"], {{0, 40}, {40, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{40, 40},
PlotRange->{{0, 40}, {0, 40}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztlj+LGlEUxSUpDDbGysYmCBKwsRHSSQqLgNWGFJa7WV3SuOAEQiorOzv9
BjZ+AksLG0GwEQs7EaxsxEbsJr/s2blMJgQSn1WYAw7P63333P/jm7vHm+aL
RCLhveJxc/vtfbt9+/3ja758anlfHlqN+w+tr42HRvvd3UuEb58/P89+jBgx
YsSIEeNXHA4HnvP53CSn0ymsYF91QH+9XksynU4v5j2fz5vNZrfbyexisQgz
SgiR3ENzu91y5WK6CLUOiQCc9/u9nFmtVsfj0ZThlQOOpBi3M4z5fD7xBwwG
g89P6HQ6KIedcecFGFwul0QqyyQ54kAymczlcr5z1OSZrEKkDGP2dx0UrJ1Q
y2QyLowGoqY5MTgcDsUif2q1GpJer6fY1QkK2ZEx3JwqojI/mUwUfrfbzWaz
YU0OqVTKsas1KRSUJ1WzZqZvdfY8D17OzWZTVyirfrrWQFWrVQwyOCaBggyr
tRQ15ej3++7/xvHZNlKhUJDBUwA/GFjx2jhLTcvkMmBEXYTBcrksgwjDe6le
r9s+8YPJgjQ8gxeAZGqUlGdJVHGESCwPMOISHmrMXUh1HSJsVioV6yvthFKp
hCSdToevaOIcm0qr3n+qo8WrOpLGyMa2W0gir61/hV3Hf6yNRiMkajZ7GYnI
9OXPeDy+yhyJV/uKt6GiC8erLqLuV6kvdmDUe1/x2k+RPKOjNW6ZceGdzWZ+
kG3Zt5QqIr2YqD6DY0W51r7CcrFYVGgqqM21jFvv+cEOcWQUoNAW+ku4bKoY
/xl+AFnVQD0=
"], {{0, 40}, {40, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{40, 40},
PlotRange->{{0, 40}, {0, 40}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt0j1KQ1EYRdHnT2EpzsBZ2FraKg4gYgw2EaIgzsaZapoLKS3ELdy14CS8
VyRfsS8fXm6fjpdleT3bf9yu3q93u9XH3fn+4X77+rzZrh9vtm/rzXp39XCy
f3lxtCyf++/TBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB/
6MvsD3eovsXm3FDfYXNuqO+wOTfUd9icG+o7bM4N9R0254b6DptzQ32Hzbmh
vsPm3FDfYXNuqO+wOTfUd9icG+o7bM4N9R0254b6Dptvh37zt37ir/+P/01/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/
lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0R0l/lPRHSX+U9EdJf5T0BwAw
iW9gyLHN
"], {{0, 274}, {160, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{160, 274},
PlotRange->{{0, 160}, {0, 274}}], ",",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztVj2rGkEUlQQxnc/SRgiCpLcJNpJK0r6YH/Ae0UcQ9okvENLaWNpYC9Y2
gr2FYCPY2IiFlYVg4xZ2FpsTT7xcZrKb2TRp9sAOszN37se5dz7ePj7fN1+l
UqmXN2juH75/6HQefny6w89n7+Xrk9f48tH71nhqdN4/vsbgu9/fr36QIEGC
BAn+CcfjEe3pdDocDnocIzK72+3C1lJAcD6ffd93sbvdbtHC6OVyYR8L6YPh
CQSgdrVa7ff79XpNuxhBZ7FYYNwxUsFms6FarDW8pVr6YExBXv/6V8ClWEZF
FekVVXo2DMgCiDLc+Cu0IYmOPgDiP/OIXzizXC6lKmw9Wok7oFDzqaPQVpBQ
dgzyIeNodzabiaTBFQuJfXYQrx0peJaF7sEadRi2ZQJVfoaM1LmjRYFwJdmU
EXaMYtaz3HrBNUEuRSiAPEijt6QLqkimsIdf2csQFrt6gyNfXGjs+jAYYgaH
Eg5t6dNJyJFcQwaER2Tqj/Bv0NrYSuCj0ShloVAo9Ho92x8XaPZsSBZsoxra
YXe7gWI1uN0UPCg4As3lcpkmwCfLGBt5Op1ysNvtBtYGCQNvBPaRGlkFc3Ld
sAZgJZ/PQz8MSVC8TTCFQwxT8/ncPVhWAq8htFDFGBmy5l+zWqvVYI7ZRAu7
vBc0aREwThh9woNDfYJR4XA4ZNREpVLhRUYGNHvR8Dwvk8nYRQJ/oGoymQS3
7cOWfrZarVwup8sJ5Me9kjST2Ww2nU4Xi0UZMV4UWh5UQ5jWS6VSLKMCcAUm
qQTaqF82Y9gViSVwlav6/T6U2H5GA6VIVUJ1s9nUBwKBDIpmBo5jmabR4hcF
5mhR34MoG8Zrp5sCLHt6CBNIK4XRVqtVjMfNcqDekCi26KNJA2VZr9fhcCxb
SBCI0vuUx/tgMIB1HFBStxrpKzDbbrcpH+tYjgaPKaidXQFK0Y7HYxSPvAFE
WN60jg7wDSn1ieqSwJlNo5IlgzDNVzSB31g3ggEsl9dsxM4NbnEhdm4rGXd/
YokkzEXc2kbgbEk4fbDfBv8RPwGoxyX9
"], {{0, 40}, {40, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{40, 40},
PlotRange->{{0, 40}, {0, 40}}]}], "}"}]], "Output",
CellChangeTimes->{3.6769160414747353`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FromCharacterCode", "/@",
RowBox[{"OCR", "/@", "example"}]}]], "Input",
CellChangeTimes->{{3.676915773379426*^9, 3.676915786402824*^9}, {
3.676915983022991*^9, 3.6769159996958103`*^9}, {3.676916038434167*^9,
3.676916039334154*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"\:1b76\"\>", ",", "\<\"\:1299\"\>", ",", "\<\"\:011c\"\>",
",", "\<\"\[VirgoSign]\"\>", ",", "\<\"\:1d3f\"\>",
",", "\<\"\[CapitalIDoubleDot]\"\>", ",", "\<\"\:258c\"\>",
",", "\<\"\:0b7c\"\>", ",", "\<\"\:2553\"\>", ",", "\<\"\:06cd\"\>"}],
"}"}]], "Output",
CellChangeTimes->{{3.6769157796943913`*^9, 3.676915805309087*^9},
3.676915888807963*^9, {3.676915988287373*^9, 3.676916000632092*^9},
3.676916048394815*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FromCharacterCode", "@",
RowBox[{"OCR", "[",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt1y9IZFEUBnCZnbAWWRAEwbIYBDEIlgUxCBaLoItgsIysfzbogiMsaxDB
ZDEIJrEIJg0msQlisJjEYNhiEAyCxTBp9rfv6GPQRWaVUcM74OPNu++c893v
fOfc5+exH0MTubq6uuJHl6HCz97Z2cKvr5/8GJ4pfp+cGf/WPzM3Pjk++2Xs
g4ddd39/78uZZZZZZplllllmmWWW2ZNWKpXeGsKdBZKrq6u9vb2tra39/f3t
7e2jo6Pr6+s3AXl7eyv1+fn52tra4OBge3t7Z2dna2trPp9vbm52PzAwYLX8
KhymKfCzsbExPDzc2NjY399fKBR6enqAySeWy+XiOj8/f3l5WWtUYcfHx3Nz
c5jB0urq6unp6e/EEHhycgIhuvL3BrmlWkNC1+Hh4ejo6NTUFDldXFzc3NxU
rroeHBwgMBirr6+fmJgAuKaoxCfstrY2RMn+OF0pMfxEQaFKNfZyEzkynp2d
7e7u6izVcY8ZJZOor6/PkyfAE55SQjUyMsL95ZCkplKVWlpa6u3t7e7uBkOj
oUhppqenFxcX6Zxmyv/qMk+4b25u8tUFXraRZzdj6oh/Mlajrq4u6lUyg8iV
kOi8PrFcYgTm5XCszOtNSw0NDdzNMUuA2eZFYpVSrBKYFtPRHR0dLS0tdooZ
wrZfAypq6h1FSScAQiJvROC+vLyMXptyo+jkVywWPelJTPNifn19/b+wRXeD
JKOSxU2MRwCQUL6XTVNTEzZkRyNUJO2GL8woVUFoV1ZWKFD1lR4Y5LuPgCJX
2QXRYgBwEVxM2T3BFQzIcfUwGMOe1JeJ6YiFhQWsFhMz89WLyDnaS0w2pCkf
R0SJE7vGbTXAvGZ3vNTRfdr7UgsSwDyPkgHmHjbZ1ZqWYIs5Zv7Lbj5wgaqy
YQNYVIFXlfPfTrWYFKlaYgTJCBLJITCOQpDci6w63gePkMJFdVCHKNkVWsyI
Rk4w49beFUVFnpgwD0zXC2Usc4kDJUQrBWFIYYOC0zPBIARXD2qhgiiibeNF
HG3rTRR57mpJfC0glN1ViYrZqTi2w1dY19A2QhClTLaJOtednZ3Uq3RvtmPJ
7qjLTxyKRgPi2JqNYJgjSp9xHmHA1qYTUyw/xZcoBmyAjKO50guTvOzIKIA/
XUULX2AEiTZ5yRGZ+oY2JIoSkJP2f7BaTsSjNFYVHRs1/cpKPz4NB7XQQeZP
zPaweC09brxDb6/wJRPY8EAbcejE2I8lpGFGgZSbiqgx/a54hY9S3ac62irO
HbQ4KAGID3hVMz10X5zLtQZTaTDopjgKU9NZ8HiIKK3xJv9TkLTzLj2JDF7A
NJ1hC/PjxnxNI36DGjPqReRKRloE/x7+Q6zswXdo7xlbZpllVmv7A44xjIQ=
"], {{0, 51}, {51, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{51, 51},
PlotRange->{{0, 51}, {0, 51}}], "]"}]}]], "Input",
CellChangeTimes->{{3.6769159019140244`*^9, 3.6769159283317223`*^9}}],
Cell[BoxData["\<\"\:0d1c\"\>"], "Output",
CellChangeTimes->{{3.676915908685691*^9, 3.676915929158655*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sort", "@",
RowBox[{"OCR", "[",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt1y9IZFEUBnCZnbAWWRAEwbIYBDEIlgUxCBaLoItgsIysfzbogiMsaxDB
ZDEIJrEIJg0msQlisJjEYNhiEAyCxTBp9rfv6GPQRWaVUcM74OPNu++c893v
fOfc5+exH0MTubq6uuJHl6HCz97Z2cKvr5/8GJ4pfp+cGf/WPzM3Pjk++2Xs
g4ddd39/78uZZZZZZplllllmmWWW2ZNWKpXeGsKdBZKrq6u9vb2tra39/f3t
7e2jo6Pr6+s3AXl7eyv1+fn52tra4OBge3t7Z2dna2trPp9vbm52PzAwYLX8
KhymKfCzsbExPDzc2NjY399fKBR6enqAySeWy+XiOj8/f3l5WWtUYcfHx3Nz
c5jB0urq6unp6e/EEHhycgIhuvL3BrmlWkNC1+Hh4ejo6NTUFDldXFzc3NxU
rroeHBwgMBirr6+fmJgAuKaoxCfstrY2RMn+OF0pMfxEQaFKNfZyEzkynp2d
7e7u6izVcY8ZJZOor6/PkyfAE55SQjUyMsL95ZCkplKVWlpa6u3t7e7uBkOj
oUhppqenFxcX6Zxmyv/qMk+4b25u8tUFXraRZzdj6oh/Mlajrq4u6lUyg8iV
kOi8PrFcYgTm5XCszOtNSw0NDdzNMUuA2eZFYpVSrBKYFtPRHR0dLS0tdooZ
wrZfAypq6h1FSScAQiJvROC+vLyMXptyo+jkVywWPelJTPNifn19/b+wRXeD
JKOSxU2MRwCQUL6XTVNTEzZkRyNUJO2GL8woVUFoV1ZWKFD1lR4Y5LuPgCJX
2QXRYgBwEVxM2T3BFQzIcfUwGMOe1JeJ6YiFhQWsFhMz89WLyDnaS0w2pCkf
R0SJE7vGbTXAvGZ3vNTRfdr7UgsSwDyPkgHmHjbZ1ZqWYIs5Zv7Lbj5wgaqy
YQNYVIFXlfPfTrWYFKlaYgTJCBLJITCOQpDci6w63gePkMJFdVCHKNkVWsyI
Rk4w49beFUVFnpgwD0zXC2Usc4kDJUQrBWFIYYOC0zPBIARXD2qhgiiibeNF
HG3rTRR57mpJfC0glN1ViYrZqTi2w1dY19A2QhClTLaJOtednZ3Uq3RvtmPJ
7qjLTxyKRgPi2JqNYJgjSp9xHmHA1qYTUyw/xZcoBmyAjKO50guTvOzIKIA/
XUULX2AEiTZ5yRGZ+oY2JIoSkJP2f7BaTsSjNFYVHRs1/cpKPz4NB7XQQeZP
zPaweC09brxDb6/wJRPY8EAbcejE2I8lpGFGgZSbiqgx/a54hY9S3ac62irO
HbQ4KAGID3hVMz10X5zLtQZTaTDopjgKU9NZ8HiIKK3xJv9TkLTzLj2JDF7A
NJ1hC/PjxnxNI36DGjPqReRKRloE/x7+Q6zswXdo7xlbZpllVmv7A44xjIQ=
"], {{0, 51}, {51, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{51, 51},
PlotRange->{{0, 51}, {0, 51}}], ",", "\"\\""}],
"]"}]}]], "Input",
CellChangeTimes->{{3.67691614532335*^9, 3.676916170909772*^9}, {
3.676916335574823*^9, 3.676916337340988*^9}}],
Cell[BoxData[
InterpretationBox[
TagBox[
FrameBox[GridBox[{
{
ItemBox[
TagBox[
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"27", "\[Rule]", "0.`"}], ",",
RowBox[{"888", "\[Rule]", "0.`"}], ",",
RowBox[{"889", "\[Rule]", "0.`"}], ",",
RowBox[{"896", "\[Rule]", "0.`"}], ",",
RowBox[{"897", "\[Rule]", "0.`"}], ",",
RowBox[{"898", "\[Rule]", "0.`"}], ",",
RowBox[{"899", "\[Rule]", "0.`"}], ",",
RowBox[{"907", "\[Rule]", "0.`"}], ",",
RowBox[{"909", "\[Rule]", "0.`"}], ",",
RowBox[{"930", "\[Rule]", "0.`"}], ",",
RowBox[{"1328", "\[Rule]", "0.`"}], ",",
TemplateBox[{"9979"},
"OutputSizeLimit`Skeleton",
DisplayFunction->(FrameBox[
RowBox[{"\" \[CenterEllipsis]\"", #, "\"\[CenterEllipsis] \""}],
Background -> GrayLevel[0.75],
BaseStyle -> {
"Deploy", FontColor -> GrayLevel[1], FontSize -> Smaller,
ShowStringCharacters -> False}, BaselinePosition -> Baseline,
ContentPadding -> False, FrameMargins -> {{1, 1}, {1, 2}},
FrameStyle -> None, RoundingRadius -> 7]& )], ",",
RowBox[{"2611", "\[Rule]", "0.0003494033880997449`"}], ",",
RowBox[{"3100", "\[Rule]", "0.0004427770618349314`"}], ",",
RowBox[{"9993", "\[Rule]", "0.0004889778792858124`"}], ",",
RowBox[{"2962", "\[Rule]", "0.0005678434390574694`"}], ",",
RowBox[{"4010", "\[Rule]", "0.0009266859269700944`"}], ",",
RowBox[{"9179", "\[Rule]", "0.0012397164246067405`"}], ",",
RowBox[{"3672", "\[Rule]", "0.0013708074111491442`"}], ",",
RowBox[{"8375", "\[Rule]", "0.0014921581605449319`"}], ",",
RowBox[{"2972", "\[Rule]", "0.0035772626288235188`"}], ",",
RowBox[{"3346", "\[Rule]", "0.008491596207022667`"}], ",",
RowBox[{"3356", "\[Rule]", "0.9789374470710754`"}]}],
"\[RightAssociation]"}],
Short[#, 5]& ],
BaseStyle->{Deployed -> False},
StripOnInput->False]},
{GridBox[{
{
TagBox[
TooltipBox[
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource[
"FEStrings", "sizeBriefExplanation"], StandardForm],
ImageSizeCache->{58., {2., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarCategory",
StripOnInput->False],
StyleBox[
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
StandardForm]], DynamicUpdating -> True, StripOnInput ->
False]],
Annotation[#,
Style[
Dynamic[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]],
DynamicUpdating -> True], "Tooltip"]& ],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm],
ImageSizeCache->{50., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 36, 31203057920033594848, 5/2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm],
ImageSizeCache->{56., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 36, 31203057920033594848, 5 2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
ImageSizeCache->{42., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 36, 31203057920033594848, Infinity],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
ImageSizeCache->{74., {0., 8.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
ImageSizeCache->{92., {1., 10.}}],
StripOnInput->False,
DynamicUpdating->True], "SuggestionsBarControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, 25}],
Appearance->None,
ButtonFunction:>FrontEndExecute[{
FrontEnd`SetOptions[
FrontEnd`$FrontEnd,
FrontEnd`PreferencesSettings -> {"Page" -> "Evaluation"}],
FrontEnd`FrontEndToken["PreferencesDialog"]}],
Evaluator->None,
Method->"Preemptive"]}
},
AutoDelete->False,
FrameStyle->GrayLevel[0.85],
GridBoxDividers->{"Columns" -> {False, {True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxDividers->{
"Columns" -> {{False}}, "ColumnsIndexed" -> {}, "Rows" -> {{False}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2],
Offset[1.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
Background->RGBColor[0.9657, 0.9753, 0.9802],
FrameMargins->{{12, 12}, {0, 15}},
FrameStyle->GrayLevel[0.85],
RoundingRadius->5,
StripOnInput->False],
Deploy,
DefaultBaseStyle->"Deploy"],
Out[36]]], "Output",
CellChangeTimes->{{3.6769161565620003`*^9, 3.676916171452476*^9},
3.676916337755904*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Conclusions", "Section",
CellChangeTimes->{{3.549547456866158*^9, 3.549547459278479*^9}}],
Cell["\<\
The neural network showed that it can efficiently identify one glyph in a \
image.\
\>", "Text",
CellChangeTimes->{{3.549547468962057*^9, 3.5495476636247168`*^9}, {
3.54956483384042*^9, 3.549564855831972*^9}, {3.5498188146304407`*^9,
3.549818822140491*^9}, {3.549818979805009*^9, 3.549818982251278*^9}, {
3.676840047534565*^9, 3.676840089354664*^9}, {3.676917437532207*^9,
3.676917440040378*^9}},
FontSize->16]
}, Open ]],
Cell[CellGroupData[{
Cell["Open Problems", "Section",
CellChangeTimes->{{3.549548005988791*^9, 3.5495480110025587`*^9}}],
Cell["Support more glyphs.", "Text",
CellChangeTimes->{{3.676840871160236*^9, 3.6768409245006037`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Links/References", "Section",
CellChangeTimes->{{3.549542073628705*^9, 3.5495420746677647`*^9}, {
3.549570366165662*^9, 3.549570367234921*^9}}],
Cell["\<\
The XeTeX Companion : TeX meets OpenType and Unicode. Michel Goossens, \
January 2010
http : // www.unicode.org
Best Practices for Convolutional Neural Networks Applied to Visual Document \
Analysis. Patrice Y. Simard, Dave Steinkraus, John C. Platt Microsoft \
Research, One Microsoft Way, Redmond WA 98052 \
\>", "Text",
CellChangeTimes->{{3.6768397995105667`*^9, 3.676839806338152*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Keywords", "Section",
CellChangeTimes->{{3.549624602331629*^9, 3.549624604729114*^9}}],
Cell["OCR", "Text",
CellChangeTimes->{{3.549625049538497*^9, 3.5496250540238247`*^9}, {
3.5498188490166807`*^9, 3.549818852948131*^9}, {3.549819090285398*^9,
3.549819093188705*^9}, {3.6768397389545717`*^9, 3.6768397404120607`*^9}}],
Cell["Neural Network", "Text",
CellChangeTimes->{{3.549625058717758*^9, 3.5496250592455997`*^9}, {
3.549818854459878*^9, 3.5498188553079853`*^9}, {3.5498190943710957`*^9,
3.5498190982262707`*^9}, {3.676839742539104*^9, 3.676839746940987*^9}}]
}, Open ]],
Cell["Other", "Section",
CellChangeTimes->{{3.54962463070057*^9, 3.549624631259623*^9}}],
Cell[CellGroupData[{
Cell[TextData[{
StyleBox["Last Modified: ",
FontSize->Medium],
StyleBox["Monday, July 04, 2016",
FontSize->Medium]
}], "Subsubtitle"],
Cell[BoxData[
ButtonBox[
StyleBox["\<\"Insert date...\"\>", "Button",
FontSize->Small],
Appearance->{Automatic, "DialogBox"},
ButtonFunction:>(SelectionMove[
ButtonNotebook[], Before, ButtonCell]; NotebookWrite[
ButtonNotebook[],
Cell[
TextData[
RowBox[{
StyleBox["Last Modified: ", FontSize -> Medium],
StyleBox[
DateString[{
"DayName", ", ", "MonthName", " ", "Day", ", ", "Year"}], FontSize ->
Medium]}]], "Subsubtitle"]]),
Evaluator->Automatic,
Method->"Preemptive"]], "Subsubtitle",
CellChangeTimes->{3.431284750828822*^9, 3.48214494351254*^9,
3.4837027963796034`*^9}]
}, Open ]]
}, Open ]]
}, Open ]]
},
WindowSize->{1079, 820},
WindowMargins->{{283, Automatic}, {Automatic, 31}},
FrontEndVersion->"11.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (July 5, \
2016)",
StyleDefinitions->Notebook[{
Cell[
StyleData[StyleDefinitions -> "Default.nb"]],
Cell[
CellGroupData[{
Cell["Style Environment Names", "Section"],
Cell[
BoxData[
GraphicsBox[
TagBox[
RasterBox[CompressedData["
1:eJzsve+zbOlVHkYlX/Ix/0KqTnfvTs7p3nt3H82MpJkR0swIIc0wM0LSCBkq
EpABXPzQj9SM7CIEEUkkRjYCOWUgYFEWchWWnMKJFKoCJCAbykWY2DgpjV0O
VZZSVFIBOx+cib8l3b33Ws/zrLX2Pn3vjKR7NZfanOqz+93vu9aznvWs9b77
3NG/974fffo/+re+5Vu+5YP/zuHH0+997ls/8IH3fvjt/+7hl3f8yAd/8Nkf
+f7ve8uPfOj7n/3+D9z/vn/7cPPRw/9/y2Ho8fN6d30HXv/+KzRm+nrNN9zH
O/l6edjeu77G1/4bbcDtXnO8umud+jrhc6dd58TrXky/sfjfu+5dt3q9unl1
swLP4nM3Cfi969517/rmuV41W9qXWaFe3QXuVXV9E5XjV01237vOu76JuH3v
ehVf37hyfC+DvnmvO6Ncns3trxkV7wwc7hQz7l1323Vvs3bvukOus6h4T+he
Rdc3fQN5Gw5+02Nyh1z3cL533THXHVz1vukbyNtw8BuAyR3MkFu5bk11v+m5
d2vXNwkHXs3Xva7j3vWNvm6SkTtJdV/d+RIjdceicccadjsW3kn8v3fdu6av
O6MhvClf7lhxmDfsNs2+Y9XjZsO+hnQ6C8w7Frp716viujPk9Bty3bGpN2/Y
HWv23XjdA/MOvV5xXXoVC929695177p33bvuXS/voi3t/viznxm8b3zYcPX6
6+66oXmaPENPCx1+Ysw+jGzUkiZ/e/N1ozvF0s3xV7tzME+8iEaqUzSsv1ag
9uviV7kfPTrNYJPs4yO9PtUnw3r6YN82Yf5+4pGA/yyADU07EZTknXMgzcyg
nRdinzA8pYD3AWeGS8icvp2jCj1YsXd2wOT8gsk+ZEE0oB/WCvlYolr9WufX
PhJjYt2zrwJt4cxZsyElyYAa1YZH+k3OiDDb1FV+G9jbJw3EU3tJvRjHGTGh
ZJ+Jfj1bkVZTfpFV+zThaEnDnhq2jfiOaZlpN8tLFbWmfDZIdJ9+LfJrPuP2
BtStPNgn2/pMyCTys/XUPxBpmUs5LhPf9qHYKSH7qQnJQorvZKT6obTtQ4ql
p/asJ3Gq3ok3Af40Ys7YG+y8Ae0b4+Jzch3ZN2m5Sfnq1evA2GxSSPNJ5aHO
RFRUdJWqGJkxmYDxWQ3uVJqUqNKi082b+xJtmKYT3Swt2acZ9nGSG7yQTo+b
2IoqN1Tzs1uXmN3TDfMs5qENgM1VnzOt2NH4vDTP3Ke8Lsye1MDmJgzPgG5f
FF9fjulXVd7GbOC6c8OKvlaf9kF1b1lge9ZGZgr5YZXJbycRGGy++Sm7WTT/
5W4u+yu1Jg24tb4xoVRKSlmO+Stq/teFvhWGNU7veodSuj9RWCMaCqyt0uSv
ZmhgtG9KS24F5CY2HueRJMViZP75S/enXQbJ9U3wiuM3hSbWvnn73aQpfzk6
TT/x+K4GsNj5ntUQ3qjDe9h8FuBnh8YtucHa6YbzNkyal3FJ5Ov1WWzZE7vq
RQfS5n1KrBc3+VjIfh+kXiyvSsAMpb3WnNG+FjdzLtQd1C2ctxST7BGsLEQ3
t0/TRSShx5vTDOnEBkEb+FveLSKmk6qbrvIU4jbXFQZWW/VUhkJ/ddojT8du
eumw43D0zj63UWOEIbNSOYNViUaq5jeUEr4/2dvcFLKapTdp5tlXxbfk+DR6
zfRgCWiEFFGOgZ6QF9o5pj2y9RXjZ2GRt+KjCNuHw899Y71uxbR9kohqQyGU
IJXwLkLqS8gXtX8i0GMP0zvlyj1RKV+8myDAY8+8t71GgX8TQdj7UUN+hO4w
UXkhd0G8mDheq2bb7QmB0OBR++T+9mS2Gsz4F8Tuo5Ex6EEiQsTFBiMnd8Ja
XBLhx0e0aS8gKiSop+Mg+Cg72Zn6oskYuyBhY5EgsYMas6y/bpThVm6UtwPm
fUo9214144N7miTUa22khavoNnU/DpUw0FK5N1Qbnk2Bndh0ZwpNtFhiFUje
+HFo7Peu15RHjXOmT2zpmZ+0XGh9EyUa+hmrqsFbvBgCMQZ79nHdoEi80eAZ
aKoGExoIM2qpjGoGG7ifj/15nVAgTw8Gpv0CWAEXGKsgnlDaPQ3QkVlOUwia
OAOTYc9ThY1DYxpVslGbqL0sUbR2e2aCaGzS5EBycNJAk6Y6QEF8FkzEu30O
ayNaFNuGImFTpa4kwkKpfODjBQ0clVeuvyHpgBhqhEoQ2Va2JT5DBIq5cep2
gvZ68RUi7WMq5StquAWlr8mcWnQn5LWhlBLZedjvQ8hwgMZ8pvRsjGPxK8/o
VLyaENyEXohgo7RBcYz8uV6zCiW9jSrEmiDsQvfl9lhhLXoVtoceNDL3nCZl
VdqDDMIEEKw+WOih88Ur2lzIepCNwnqdeKh1fByp5C/p2u/D+1xhUYAOJSnS
oNglQYIiho3yWbnEg/kQjFRRAw2B5V5IxktnkkjFYmtltNj47MkpJT+K4HWK
iK4SI26Z2/ufmuw5a0p6rDlDRSKSeX2h/EwP7aI5rUJnkl+4BFJV1VA+7AuJ
E5stRuH1dOhI899NVcTzQMiGKLgQ2g9bJad8U8ZuvImst3XpM0+emr3MQCmp
ueJznSoYSIHDHwnUrR0TMncmyClt5yb3oWph6NVDNDUZqz9Cy/xJUmnZzXPG
NsYFmXwnjgnNopiAeCEXfBMk1VDTkPaYqcOXfqA4r7AdTSCGFh0jKkhSNQ+C
rZkt/Ad6DT+1s31B+IMi3fU0Aiybpz2PetGMXgMoyRcOR++L0jxMudytJUJS
00I6wLD0ajaXWpoN/VLPT9WrU72Wb1GhYhbQsLxZdkZpr5uqdk4laWZifxgQ
21GvG8KnxTElXfBL6CpMLnuPYd9XpPzeqSgOhhZa6lfFhF2gt7Sy7F0TQz+p
dalDy/wM0kpp22u2BoHNdUdoOcopq1+ALm42g4aLzVIv1jFSoSQlquy8K4ib
LJV6lCGN1DUcUSOlB5CXPhB87Jj6GCzWPQl3OGuVIyCNqdRELyL+lAk71q1Z
J8C6AE4d/3J7zw0S+LlXnPd4yuusBcVSko+YgsGm4VIBQ9dBui06iT5Z/WVC
UkSsIDbkdRMSrQ813SwJADJ/HCsIQmR7+EPZhj01VAUQ9NWD2vuZob0i6a8F
T80dhAArMtW995CTLmk4uerp4d4aVYCpaBnEUPu64diQ/1EDqZacJ9BWnbsC
O6keMLEVe0uNXVpI2h7EAm08J0hPVnnoYczeTRozKOxt+Qi9N697hzqfbu0p
r6k3pqhBNPQog16Q+aLUPyCCIlaiCfTgMCxUk7LnN48gra6TOLHRZGmybsTo
TPQMeDFBQkRiKJFFArKpnBHlxsdVKxSgPTztHca9PusyogLF+mMJgi0Ylxin
d08yQnIa3TQzYp3yr5Q/9Licijf4gCQa+KxNBYtn2mugRKJBcqDQYI9tPKAW
6FAi95TUWnBdMUh7LWQi3ajvcrATOk97zSeFeEztmqUcdKS8VS7IhSejb7RF
kGmXQdsrCoo76/ObYayQ4qytgndPjdVTxceijJkhepTLfiF9pP2LlAMN8MEj
KNUznugS1Nzjee4wmbnHkFcGo4/x0N7bg1CeUtMeWiwLomLLIuOF0kubH+aL
MY2vFaon3PTEpNLpiuqZ1Vv64BjZU2NPyLA+eCjHDSNRSzrYBus6XBCQRjDk
NomI3dtWAptTFKO88YTlKPpaQz1htSn1afklDqdk0xNRk4IhNYL6sYXsCJdF
SLrPJmcO0upwsuyAkjrIgGjVdnGj3oZLCSRCiMfzu5iD1Q3LSA/Fk11bGKAF
CPzpqVfvIUqU+8i+8FIY8staSprmZGhwJEvVUwSBnGVsuYJHHROp54JOGw3V
zD4n+7X8mruv0ITw5U2jtUnxL/pGhLnjdUp4ZK1tMPSgG4Zq2DdpWbkmGaEj
nVx2WRDQ2I8CSDgkkuz2BJTW6IyV1HFRMOhD2E2AGJiq4WzqyQznITahxDHV
Q3e8cTyFV35sQs2D4dwEeKktbHikOWVxxHaGg8XoWT8j6QCPdhx0KmEi0fum
V8CdYJz4wCRUpaDkAI1qGaLAW+zGWztudwU61EHaQXgfyCSkRXtCUjpDohmq
ufYGPQ0QRnnSoaoy1aXsmgi7lJHBJBoUXKsaUs5M6/ZUj0QGST+5n1T6gbQ5
bfcUZVYVtpD2LzuTIBAAnT8SwfYLPnnxr3G54eTGZmfNDIsbld01jpuIdVpt
qcGQXOPU8z0d1SxUAY6p1IheYkR9BelSr2jvZLyqgSOvqRSagT7OL9WkR6Sc
7cXxPvf83h7Q8S/tztAJM9RNRHhsa+n9BeswVx85rmkcCvhoDJeWdc/eOWII
Vi8BXTudJKPZZtNAxlBY5zPo/hEbYeIbSvmeJNSqBiunyMueGgmXAnNHzqnQ
n3g5gLxANvcKY5BESJA7y/pvubZfi820BUBD4uoaU4xavtAbULffi4UN0l90
0nuPlNp7XlSaOqCqOe6fqV6j+QGraVMfFlWrkkj6ts70AV6TAaoVDWMYy3RU
IdZeSjrSQyaYC6ZU7T2ZlFr6XZyk8as3oUZEqPGwVIq7CYs1Sxy9l/TUI1bg
CGWvWopz0XEjyTx0SKm2hl6R2mmqVt4Kxs2ILArAqfXidwTe20jCAl57iriH
/PJCxhJHa5FEwMEGmJNTfcQTxwIu+z1pC3V6qifA38+ujatePlQfuCiIC+oF
MOcdn2qvKJ6cDVKO0FlH7yLm+JPN4LPvbUkHmJ9+rqj9PHbN2NQgKbgfllYT
K3K8NEBBJE3reG/iSeGHrrwKajT1DFI6qXbLu5VhcO91eU+JAMXwxsAGW/iI
bw2Th0SJCO+KhwRvJNB46+d89kXRS3N5JXlkcHCeaU6hh8Fmag8O9Dyet2ws
LM5ATkwHea8PUkUIFQeS69HZo6BDsfcUL4k4HkQ5Q5U3AQwh5hoHzgBqyyOW
a48ONMR1eyeMAsJADIlJbrJWM4BcN318IXqyFUX1uXZqGfiiDF7XvHwQ1U3e
iVoQCsvEhn5VlQ7ssk2f5ZR7gXNLUxjnLUmoNwbIBZULHU9NAvFQwk2yRm56
fXRkXIi8yhP9LLjUVHAguI3Bh+h70Eaa09nLveKeoubkQYp5VpImXDeEpDdF
WgFBbBNJbn6oceXGTIqFJF3jrSlYeg2ERU5NRtBlUe1TQlILRAoJPHlrgAiG
hHLV0vJnnZsfhlgtQ1vYw6Q18QHNhos/+oe9mIpSqI0KeHUdGB6qm4fSO0zf
7zRkj3T+sI3UlVsFjKSqhLYhAO7s4g7H2wCuktQJUOFwBfaOAkrOZZRFGEXB
Txuo/+EK21OkDH9iDpmqDVLD/PF64VaZDY4hGZyAMpKLctKpQpDBxlbnhrYB
S9Gaui6BtNY/hJLkaky9PWe0Z4EVPgAI5fEsQPfVU055rvU8myvJNaaVbtDb
CXx2PlCwwAT3C3thNDCmLdoPMJ6NRxlzmgr1Dm/o8Mk2x4QSnMouFRcoz7Uw
JGz9rCIT/n4fIbBugZsEkly/w+1u+FZbRy/EXsssm/ZCDFbmnQduT+HbI+5o
J6KiOsKiDz1CzCLJuwaLBbVkWUu9MsbStqddOYuhm+fR5M1LEGQQnoQReUTd
nZY8rkSkdbZvIoJR3EnEXMnJOwiCF7UYDq7OjoPXKXqQ23Wq5jQA8usBZS5B
BmFVQ+MhbmRto6u7tpPESan12sR6CNq44jFEO4MI9ZGWZjY6sVH+qCIDf1QB
Ls2uQqJ1zE/3iOII7gnIVhdESbiG7rmyQzBVvnwXDOljAySRrS81+UI5I2RS
607U4m6QZVMoQUmEGkoNeVVieD9CFdx6EpI76rchLNxj+5bHkKHU9lZnF7q+
a+r6XA/REqw95V1O/RHymrnEQeGYhlbNNdx1A6LNskOJs3YS9uSalyRnqSxB
oZHtj6cSdHvUDaQGayD1nPAI/SSyTFGCVFo2sfStqQHzrYcU0J3TwJazGoog
kjJwI924Mb23DbYZhDrZ6mAXi4+mEgwm5Wdtz+US4mB7EI4g7T7WIWrclliv
TrstYlSsyL6PpuaBaN+otWE3xP2GdZJKZg839+rUZHpn5WmOFEZBSUmNaffw
V/pD810lF5FitXGVNuoCMcksqjJOZi0lrq5rB9YElnoDUnIvKKTPAhT4Q3Ty
HaipCkjOPSfflAwiDqBvtDwlL3i3S4YRRFSaqf6SdyCDuQaFd72CInnhJqek
b7TE51rJMeVOQDahVuyu2ZdGHnT0YmPDAAYywCqXIOy5nJykOQQXFQXWPfbo
mi1kq7wBhsC68NI+NBOAqyfKsdWCBsBCcNxI78Gcb2LnDlB4ClBEnCpUenwk
uhTvOmT+tWYEZx82koRJ6FXcPAaBoKP0Z2yJmd4LBfK7eVyI4SO6a7Tu2u/R
rjM8685KxK1YAKJr2/mySqOfpF+v8XPHRpKUWQODZimGjytO0D33lDSEg9iH
ObVnNntE9xQBlvRGv5WOBZ3/3kskpduY5iSJ0h1RKrFKUDGl3JTZqBdFoyIp
TClD8SqEXTaAaMAgoVZwqWhSfvXOVU8cDxzOSdY8m9QCiXjcPoDt5J2fV5DC
myOULHHzfs2Ok1YggtQ3QjG8CRGGoKCgdWR2UUKxL5wa2jEqdc0wK4Uh/f2r
RBJMBRdIflOW5S6I1QkGIB+xo9HyQcleyL6WSGpUGFITQO8YCxfWJnGclU5j
iCexi+O4pvBxG8nK6YnmdY12iKgO1JSq7Atc+zXlJuUItl2OBgF+vVZWiIxo
xwvaaJcFkG0DiD0p7b8a5j+FEuWb8aTiBWPCLh4uX1N2U8MG4ym+uooo2G4v
sYMGclmhRNCGMNYR2l9wGrqdPjMxBxRq1IVGAod6YfujfUPuj5abOnly4fGp
JhP5jpJHAkITeghcq5HLvp2x8Zpf6F56BlDOatBjoJNx1aJ9PYHsN4kerrpo
k5rkuG3lvH5dM7zcjPkW1Z4N6rRP9yVZvEhhmJ85gIrW/JgMat9+bbKsrRGX
++wgkZzk5doFitty2Z57dWaJQ31hdQpkJlhkrb0u5OWAKvsO1nITi3MksJoa
A5Vo3k4G/nOHEHpXnNiIMdCrBoD7WntmDkXQI2uVWjp5zMzkFO71eBb8Qc0C
VdgXNc9LLenkTjcOjjMVNWr5oAlugOaCg+CRVbkgNaCdo2896ACHuqk1oWTH
YmARjph6k1bptYok5Y0P1xESSepdea/BcdwhMan/oV2V1QUKKxcUPiayhbw+
Qt/2Lhrck4uScA2Cyml6GrvgEdiIVpzynbNS8DcALQrIxGtajuixo4D2QL7B
QtcSLFcA9Ay4ie2AaxcJqROJybBWexpqJrVYSFEjxLTd9WaMVIX5443WWuNO
shY3BURIavs913YEI0s39vvXZP81z895jQ5QECOJo40VbWGo8tIw5BSygCt1
7JFEiEJJoglJoJyckALY5o3BjpajHQRHEPxkEXBHWDzZKuMqqTE6W+r3pDqQ
UKtmSvStYSZh4Tyl4qV10I8otQaZIimYLIMeceTsdeIwMZakeM1BRAiuhXiQ
U2uTCLR1r/cd5B2HwF2mhly7ZW4MJIJUmKgPvA54UgNJnS2ynjOOBAr1kTcm
lBE7RFBECUQSofZzVOoNmI0WiJjskgKEGO0TQQbqOanT4OxgJNk7UsuUpCgB
aMKpZ+O0RTKCn9rJVKHZBztjgIoP12laaoRUB5wqXpdZpmR1iwUpyXUwSSff
Nwoah8ByHPGSROBWJCqhsJ3uXK/DV7toldvMcEVI3aniK5iXnV1HuJCh0WCU
DLTx5sKEmxLW67U65XVBmkzfYKIEXKthHgLejkHna9bFAgrWpZySTX2zK1Di
ArdON2lfLDrJxFsbf+iNgG8JpRkAzprIzkDyxTipnFG5uw4M0Yzj+5U7+u06
eARuXMucqb8ynCULIg933IXKWrFcShKJtq9Vxxgo1lvvfGI65KhJu6vG4LM8
QptNcRBNuFdqweFayMwql28GZzW4IgIx1tfr9JWZkalyveZve7RG0Tbf7ITS
nOoXkYTaQuIb51ds74ODrsycKbGXQ59cWsU76NERmnad1l1bMRWW7hKqO/5V
IstyKvd32eUgvCyD1wwCS5ZqS9LAcSRSY21ee3VjMJEvQbQFFpXucUwsKOyL
7+OwVUyOa/rEsEZNjsTjWMfmM4TD9p7x27XMby4UVdWFt14Cnblxb00EQwjA
TOJkaked1Wxhw9/m3I+KlJoQHc9pFR4kjiEj1mkSopx0MqNHRYMn5X6t6bOe
MEA6t8CQ6vKGjbkqUbYw8beaO3u0ELviW+ZwBj8gjG07G5D3kujwk7UIE+/B
IxSwM+3lY+xSO1ozRKOpPNwj43bVKpTvkFByJI8/IXZdVWE7SeAc0fwVnSzO
i4rxa84C8d0PMRSQquLXPjJbdmIJziVUHwK3Y4xUtRiHPD7IAgBUTAJnGnJB
o3+tY8KWP3YLsu4u2u/who1DBlbMA2JRM5mN3ukVYE6sMtrj9IiSaGcdabut
IuDIRBxwNqgpT1HjATWjUr5UCzGjSI05KQSEIgTXeUIrQPqmNQXI94PALW73
MlzsLJS2wZ3A2Mh/j05DmcVeuwE4W/AoVAcglLNBrPa0kNmJv91i77iXtgxN
PUMgZIy+YhXIrAlly6HNjj0qjLRODLyaOJQoF6KMqOfn8GV6ePLCEYvyOs5M
Wwba1iWomfClcFkGgRLorBzYGe1aC87XtdduWI6yc2yXgFXlD3oyfeVzP33n
wg1npHS2PM4cMhQvWBmxGNm9FRe8r4w9G0+rhwOYQXcHJJX0d2WJnCFHWFJw
EeAMAkvK2uLFKb8uH8Gi12FRZWMMK7/CCOHWYboFcxnEVnQviYDG2PJ6IlLC
mZhxFdPqRAiFtdgS6l7guiJbIYwlyGkhqiYUHadTIWicg5oRzfTJDGuaLCd6
UiotGZD61eIYKtCeU2Z3HQq0HwLIWU2BFQFFpWpNK86ojX47w5CJNLyVKwd9
apIbB0wNrpySQESBusmAqfmDeaVMzfyaXZtxcwqNbE8GecqwUsfynIFFU37N
x2gKimzqFCBTQnEjMW5k13zEp6CbgXcGFjyVjptuNJszemrdAqJdMWEdYtys
deZGN5WlRfN2ptmBEmdygD5Pn06fsfSMSVMgzIAzIx23OsNtm5FXP0ddz4P6
rFyYmvz8p86081bBqd4TTYJWAphHniO856tHfqRE/hycZ0w604UbxwST1smF
GWCngpi5OgMsfk2nfPNQZCNv6TqTw1O/hnSYp/RMLs+vO+XjOQ+mmIaXX3OO
lHy41RXPhH2dbLgl8M+J3dp04xzOzOfX/OozY6bSc+rOjWaEwWW28lezXtei
mkXjRszPTKsbU6CpXKufKl/rzIw/b+mpjC7m3M1BdCNbztax6/mp6r92mHSN
to03vbA7JyXnYcwRnEemjMKtLl1ZHs/Pb3XaPGxKAOe/vdWFbonYUwNmxGcK
ihi4mzYyt0T+CbiK9xG3cZW6MY/zOWCekya1p0mmZqadWuj2AAlQnE2qszrt
M7/KNsysPp+Y2YV1mnPazXhcNsXDcpUZpxqL8vkxmufb/KI3TjuT0bdk2zxt
5lHKGnKjcKWrONlI/KnfbudFZZLptiFPMm+wLXRr+XKj/J4j12UspoaVaRL+
JiEtXb5MnEzeKSbMUILNmM/fs4XrZhtKbEsWzcd0ApP8h0NnESPO09HP47VL
H/TqjvfXXTn57jTPbu3P6uRrnrML0/qKvO5Ov6oMqy3ZT44/mNf5nLs4SRce
jM8OdwS9jrmxW9Oi46+1a3uCUbxb850uR0EMEJc7u9Mx2juAX2HOvkQAIxpz
vHI0JrGKIJRMOxjpAVLz3PcUcQcZgHeKXseP7/TOTnG2FbvK5g6LKj47NcnN
cIN3fo3emRnFbF2YjcERnqzjTTy1VqsckzWl4ZoMSLmzS4Hbj8ZH24o4rmWe
WklyZEd88uBOPmuKqamayNUSyqU+zEyBlqmMWkB7N1oSOBaTSBCbBap2dlSP
bmr+mKS+XBHWbs+ZlVdfq2Eji7odFGwi+kY24dtUnwAEkrjNVPOjLEQfd+vA
lg5zhh4gzclM20m4CxbtKjqZEHX6a4xOlEEYlirv2ixZM218GKbasQ1B52mV
dD+uONNuqQzCx93IoiKpI6Pm+qKOrj5wuKRELUGq0sor0nkwJw/uY4ORSypm
ywZERkHV10XtzrMRvbt9SbNG+gpBO9g5209aFqs+2FSMyU5ahc7CGoQo0WM9
mfLEw7qs70uWap+mpScqki7BM+idWaZVdYQKU2xpCiRnw93JEpXys5aqazd3
uYkS0bsSMUQ/sXo3BHRdPJJax2SJQxSaDSIqy8VEex8jnj6XQtQlFerIixi1
nXKy6KamTZ0Kt0AUEq3KZWFmWbOK7j1BVPxa3uFwpP587TeL6kz8z61v7Gkt
X27W9ooDUxV5yjV0ZdpDmjRZiKuy1VlVhe+mZlXn03SI0WRc4FHVSHe7SEs2
tSPtmrB2JrJKIapHM/jrpr4o4pBi3lzEls+dXUcLd6IDqY0JpjZp0crm5Gwn
+yOlaG7hJNyR/JGQHpqp9I9t3ljQAZG7HxtUhD6O9NDEqsEjGRAODSdyTjRr
TvKK0U411VDNwttF89yAuFM4g8CRCVU4JDF1Km0Rd2pbDOLg103dGiDyPkfL
WaRlEeVhIc6aTghAwM462yuAU7VYa8o81BMI3/R40Zb4FiY9a5QLHUUhOwFY
WSV0sFpi1J66TvXcWLKsTeiMOZX3HevgNX27FqksVKtYomIC7Vx2zfTef93V
S9jMO1L4pNv9vqlbX3W27LWIluvIQ+3GBZy9ZpypkAS97gkznaY5mTqKelj4
dmcSkQyICHiHM3PII0Kd9lzsF0AIvF13VY8xsTsoJL1LCRXn4UiZVR1oQxDt
DBnuQ1SHO0tJGa+T+NJMj6DAnTuOx9eYsyRqHE8m5XCHAJlTIc0jAr5QEOGd
fB7m6QwHB4Fv1rArNwScnTgI6DQi3R7485goklOUVpS69Dl0WfJU0RLImAh7
WIVw6A3AwBOhma5SHuxHZPbyQXKQT0h20YsYTQpKACdzUu4HSoSgq0lsMK8V
icRWcY7sZPVsSQjxpLU78S7WwZBlO4odz2afS7GKFTmlbRaiSGkm/46CRdkq
mLA7O4wZMBTeqv2Bz5og9EZvJyFGHFOaBD2sEyoHIsCbJSWRMNswWVYC8Vjx
aF3hPGv+PoZGlJNzWXyPOy8ZoBLdqTs5ASUuDhdOaNlT2dlFtZlib8p0ZGWw
X2kWeBuyKUck8wEgqyIF5e8zsbPlQQGygKsg99MGU1yKs2VUrl2COileTGdy
JNhQiIn+Oqcqu7hiiE6YLR7XgFRKG+0uSoODsuXEj8oWmL+TwaJUlQLEbnYf
KSGOTxC7XDE34VOi1/H4NK1wOPOKFuoSw4NTQYKEYwoUR7AjmpX6g0gFL0L0
gxZlEjLOiYoxvjxgV0xbyDUPzmFKVazTqVhbmCe1NO1kPJLr+JNOWhIlAoUK
5Eer1ph/KBA56YJHGYqcfSkclYzINrCMuGR3FjqORakSiZBRkaYYxdpSAjul
+a6iCktIcLYwaG8hU9kRtSTfDLlcPJWGBa7GJZSE83yLOrCPI5HjE+xFfHdW
7/LqpYars52yKFysjcw0SbQQponqFogUyDy3usbR2ZtBLrmRrZXyF5SwvBmk
aU88pHod07OM7y66E2mpEWEzOn0853jGsNw0BZR00xGpwkre0bQxIzQKRfhG
C9cdIZZpLwhruCUpErV6NU/ktEptAnP69dkuThhx1qDkXCsUm81OQsc8CQyM
VHch8p+hJwm5oE04fV7nXGZhCWVFvlJTw+psMMtI1pBc33OjxYAEH6OyhZSp
GM7RkdQIIrDTU1AeXMUlAkIOxiJFGtiRVTl3CnroWkxCSYGdmp2SgitIXSwq
wyRVNUAcQedb6UiZIAEHAZMfidmx7vODCqxQyNNkJ+t6OmQfQ0SCtWhmJjRt
rpnfK0rKYaFZrm6hFdEYhTTkNGEps6n0fUdK/PBtz5Pr+I5iFHIh0ylww+Ky
Ekt0uTC/Jyw97pCuUKeOg1eS8vTZYbRFV6SWK1OqVRh/nBAgrLin7ZUPHfvr
5u1oZkZ1XGsF1zR5O0y4Yg1x5nfkQhBnzguQlnTJfFwN3p3urzCAB+/EGGPL
aPno4OCjal2kyo5WOcWoH31f9ckdTJgsB84ktoQVe+f2rzBs8FqfyjGVmsUl
yUgbbIv1K3ylTMZg0GzVq4OiEoaYqPquUaegimw2E5Jty7nfKXSB0v2YFwiW
pAkzB+nJJGFLVkGTe0uNMTQJBNZPBBfeEVv2igMLO9cFPL4S8Rz5qXKnsQv4
jEwmY3pXJLWW8FlJyZDQr7iWBX52LlM7DHYHe0ZbZl4xZ5xRwQsiuSGzG01l
TDBD4BiJVZFf++IRWitIxMoRy/LVJTzFNeKDpGHKGucbS1/FrpjFUtQS2oNE
2LCVW9gzyBCKldJglT3qCr4leYHgr1gTOPHNYKsmRFpRG2LvGE0O7g7gM4wh
y7rgdcIkqJBZMswfG4OOZNzKFt+nx0MVRuyGR1YduSDpGcRzH+6voE6UU6yu
np4wXgJdsl3SuUczsIIQ0VQCPtAYn51MPbPNs8M577HzJqrfheBSf8IPunIK
01aMPPLRTXJHvMuySsH63CvCnH2B2IY25btWwFzQTa5XKvIr0NhFjxjlqUF5
R7GzrBFrOZG5bsaSBxLCZq+5QAxS3MML8R0OVqXQqLsSw0bNIWKzzIosSLmU
EBB0XCt7Nl6ljOtsJ9aueDw3CWSehpsSSrTRwCHqqpDuSQ0EdtJDGLCCiCXD
HN6YyApXDArRr2PAvY7ncGuxNh9NNiXBwUlSSE4xykFK4ZB0qLPOUgFhFb5S
v1j6VtF3xlC4JA+y3MnSUC04ArHd4/6Q72W82H3LwZVDJ+mwi/Nz7vuzNueq
2xcM7xJW6o4HF2IClDi7AY5kLpck8TFn08g6KiKsWvuAj/W0xG3mYW9TcWnu
nP/BSFe/1AZ3+rPbyVfCHE3DzqVD9cGCqw3DjuJIccmyAxFjG/YCLFGrOBzw
MsEZ0VGL5QLVhV9pBpbxmNGeBVHnJZtOIUDJkyogSdpIaUZwxX3IglWlnt2h
7ViXI8V5beXbV0G1Qsq42cM5A4vwCsHKJwYsd0EcIufRkfKBjIWeyEMMtNBj
t0IBwgkDaMCJT/h0OQQ7/Zbj5V4YzqMBJ8HpdxFkRrIP4HAueH1J2mg44LSH
QykhDrAz7Tk1VEs7H0Dq5wXa2yR4kRluMer3EjhGrIdhfCJB3Z2GT3IHaFAi
IAqFUpnvK/ZRNE1BY6xEoJh4UGBSKgliGhCCrsESvo3tDXWYXKRi2RWd7Dl2
RG+OVL8XGwLzGaIwrFfEhI17hk6bWK0pkm7Gxn5H6rEXtMPqHEfdECkmGpRY
JgYLKYj4OfJ/xWaMwqimdmQwk7lX9Ch9SP2EWquxDCGgjt6qS5FiMnAFLEsM
FSbKC049LxOS0VYFIPU+zKwVPAVwxHRvZBZZXpGz3qtwUFz9bFfFeqXbQGZd
DVRGUiYUA1j6pFiYeb5Xgj2acVak9OQHdvJyfmcoUuQsOCAqh/wylMhHxk1v
2q6E9XzgJJ9hsqfdziXOPnte4FmjGUXcp9JY01GVWEhb+D0b3NCiVPiUcr3E
wmWByDPGUU4URdmo5+GmxS0JBc7BDFLWu6e2ydVEaDSyXIUjmR1eb2ayAjg+
EMO9ZsEeUPTkFB/34SlNMb76+qbrFXgSCkQM7lDOwiRx5lW/Rwrw2z3pAz1r
9kRmUaGVrk75FckmHQjGh9YC/PEeL82DGiGh5BpNxY6jSYceoiEmAuFsympr
T4Z10MyVWOt5qhiWsbaA4lzX+hBZupN1hdU9T7WL4e7jWuap98w+UmLKWUAp
E0RAgiWvFK3KGCXoPS8ZQF1WwHYXjAkerTSmJKGs7XvXYSEelTOW2ZAmIkQs
zhSCVS/zC2deOUyUt0j8AhYUViIz49lT0EMTGLqLfqcE29fe9ZknpN5if2oh
bIxWW4eR+qJuR0oCXW3kVDOET0sevt271PjBXWp+tC5IMTVjuLtDxRczwldS
xLmTZL9ID8nN5EVAbGKMkpaeCrtXMmOlqxfVmSJon9UFxJppz+Ub+auV3Yzx
Fp12KFTiSanQJ7ipOI9dKdtTTilpQ6Xow31rzBLZghpIE2JJh8TvPE9139ED
ENUci5f7SMfgXmSrYO0bNdifpa6SNXA0LKO0Sh88EbyfkXrnykaWe1hXsSsw
S/ospzZA/5yAU28lEfQ2qZBiDXoqc84rPgUSbtBBVhJM0xOaFj2etI4hTZTJ
0tZKxyj2c6Xe+1m9UEsiqGakEFOqhld4+ZCWGaV9CFSOIo5VtO/i9KGXUPKK
ECuSSVo4AiwrRUYylNWYzkZC+ZAutI9lSA0YmV/ySpkDCsVKx9sN6dy0ewyW
d9IhEIEDIGyqsoLmN+QhYhq11G1ap8Eqt4rQUU6NGGpQYtO1DxIH36nHEz3k
vKj3NePJRtgOjDIuj0fbahj14NSf8oVc8L27YxpA9/qp1gicZ7lrOvFOPd2X
n80A+tatNcUO/QZ1TbEzWRXrihqznq96dmSvBSW4s2cmc7J4IZDeyc49tJcL
lNDeTN7wxixmf1ed8HlwZMWcBML7MJIKQWwbNDTqvhCbxJyaJctHMR59AnMG
fR1TZU99hdPMMUHWiwsSYjSEoWS7vwzOyl404yi1NzB52lBAnR6cFOFwpqog
iFpPBMBNSSjur7jJX/kBPmUlIWNUDEcZwVSTd2pI9v6spwOdPYbHd/Q4b8Ry
QSHaWAmjXsulngs6dyOhoPgZEWzTBiy+bSFMoBuaJpJ9OLfH+HyYww3A3mO0
6o20/IrBZhi/7ckv7ZxXqi0aEapxPUdNIKJJCgUws1XlpIrRGZESPhcsjrJ2
DtOXRWQl4GMSFPSJdYO2046Abwo+Kp7FSFk9sIW8y5kSHpyqeuE8J7uAM/y0
Oj/YqEclLCs1b8KXAvYMAkLW6fu7ND7TIC5RNjwJigq6hAw1bBmTuNsdXdjH
0MeCyDKb5lRaijL7YOkWdO98E86ramQR6F4eJDUjbkwQaeLDvlFfyKM6N/0r
Jcm+MKyiSohvotluIkE0WehzY+mjj+yDzVVC8beF/dmGhmhsBzWFPK4StZR1
YeebICpPqieQVOpOe0rFLn/L1IrbliL6ybC+GDCVAgXJQ1pNOxuCaz+jUzlB
Aq/K4N4Y90noqk3HLNkKGxJ65UK6beFh/Q3zTyxxZ2EyrhirP58H1s86dRsj
5CQZqgYgmDSH80RqpDm1RZwYVsR3emZ9CscI02hMBnSVfo0mpUKzglOTILgO
l1RMN/ez305CMUWhHNYZdhU4lIc2s7bxDtEZWIYprBVwnnLQDSvOftkkZXs2
O8arRxMuXKpQXampBTi6V3VOckrOGKbfaumfOBu0Ab5512/7YjuQfMxVO4Ow
D7BXAbLNlAObHNc4BtxUJNNfMpTpz7MVYRqnqqylc9cym6b6W+JAOgyv4pK1
gozn1/d1jpdpy1EoyZOHRfwpQ2vQZvAsQ1AQRvKlqRxZxfZvn3HO/mJFP6Qy
jgX3wwxljGDt9EY7YJVJWNrpD87Ey5lAzAcyTeXXrCOl5ZM8KaLZF47oG94C
gRx6cqRmFENKTBh1jJEJ8DZkavZl6tB71YlKRDzDCVJ8M2Lz9MlHdpxTeGKD
H6C7MUnrEFd/s1Fm5Y2hn4qjRyeHu/xZBdeRrLckM3xWqItpRU/6OCyxt7pZ
NXUlSlN3YnTk35iUJukrjIpRaYl9sC3BGN6wVNSd3S/QZSdaE110sLPkW6af
LF0fUu3DbHnRVWHnZJiqqz62DSlcuKCn4lVysTgXTU5cZYIeU1aNMU2+nCav
N5VjEFOsg7PB4DDSqVXODxz62vi45UycjO6jA9cXuzx5dZQ3E/2pb0s1aDrp
ItIj8QBtvN/2qzbM1jfHa/jWbrb+VN+0Pmcf8ihdPZBva54UkLan1dvxKV8d
P91gHpMjyP5i9T5n0CpZIla1hcFs3nFAq4smIxVDMqMVA1Y0PvnSawr07tGq
pZEUKQ03xaIg2Ih5sMpvlrHjYWZ2b3b2ZmG/cjqlFBZT252PHCYcv2p1IYa0
+kxw9b76igCZSqJABro/INyzzTEESi1OgSgCIRfcZqIoZU1v2PZTFnLmrtoA
rAxjHCSzykBLQPujUDDt290UqkIk4M9sFCpWlrvXRZ76bIT/zgOkmEBJAg7k
3bg6zxyxDfRL35Y4MxWbNKwKYi/uI5VGwJlU2SO2BOC3AXDBrWl7nlDw9Efg
+xBKH+lOkTFtHyFqodLDcjFH2gRvFsA2I3CqXCrmPHkzDkixYDFvDRPKwZVl
B2mp8KppGcki9BA0xNRkbSht9C05Rb7QujPzV7XjzsCkFVkbBByhzLil1GiM
vcGLFa/bSk5VM5TP9k7aAFSYrcxWlKo25ld5NWnaAKzCQqSi4DYJB8zTWvVv
UUCVRaebreAGErY9i4nrlQ1zbe+1fytE0nju3aOHL3A+uUDgN4G9LRoDcDJX
fG3AproFhzp/5l+zhYwM5WCSu7ZftZFXHFP2DiQf/cq1W5rwJlvF91sLJWDs
2WZCOMaiofgi4pb1xiVqzMbgUjva9gICZbRZYnrlLGo1ZVqysOgqQ46f+MxN
UVZCImoIRJxcmytfgr3gB9lmjb7YGRO2jVahM2x7GVy3E9xEVakkmMcwUe7H
mhLuc3ZweZJ8YWWwPkqkQ2cml8nBuOtECoSIo+K0MeNyoq0UrkYt1CzwpiI2
MCIRslbdxAozqXctgzV2qm20f5XyXRaCYZHSKTuy2aAEt3ON+kVmU6vPCpNZ
LW1AH6BmthDrcmM50RmCKnEHt2IeYmMSWzImzyq6jwBVgVbfy/SHO711ODpV
630Chx7hJm70lQSRp2owGphWlYT4xiU7Ozt/NcXqIKf/KtkK6ZYoNK2o6Eqi
qVEOIWgFNEA3sSuMBzt0aJCbtCCV+XKvE/hiMPMkNjMp7uZ4VDDp7mKnJ/tu
gigfZWCLl5IUzSGTUE/VvNEikMNInbABvYPExaMtkSA9ZCAXeqcQdpf8bEyE
6QM0SpCC0qmF8yRVGDE5CM8E8CVaGal+SeubidTog8YWTBthJz7nZolpUxZ6
8joxNk4CqkSiMisAwuTpYsEcpUqVdyEFahLaFRKkzzbEDQJ/1YlApQpLbAfm
1For/hWL+kZC2XPeCeBBVdrAgZ7u1K2CD4v1Tov+SHuvXGawbyIiqazKjBvM
Vlyg/pm6U9+ywU7svpGnPhJtWM+z0QnVrgkVky2nbZTFGichtH8MBTee365w
PmNbDHlxIOP5bJa3S6MlOLOK2yiY0RJiBEWj4jZ2Ry1MIp4TXEEJ3TCnriHj
u07HJ9HPtj+tWitE6qnH8NA45k6SHt+eNsg0p31udxK7uCPrpSjAI+xBTEz6
RsTTWAGc+8aiQ0cfvPfpG7YWpE2bC0kWZ5cBbmaE2UBp2xZR4FgoelAl7JQh
ej1BIa0aTGWxlbTVk97CAC0ERYj9p1EFORhFycExqPvQjFECRgkNJ1crJF2g
K8sOpz++avgzpuqNOWLnajivbnnmWPRFDCHmPYdj5ZxEyiPfm3EVrumkWlwC
2lEBED7eC4+Cg1B6twnjSeQtCv4IlXujsR/4W2QDDjKnL924FqUTnoIS6CWw
vYV6TxyvgWYtCJN/+lSND06Ba+TA3HM/8RBSw/WIMjGUBhCP/Op6j7g3z+SI
FD7Q46b5YxbfAZisgoOUCx5KUyfSRu8uTFJYxonMPfJOs0wJzwpJkksJRcmF
stVot0k+enHpSZc0v7QwySNi7U4R00TGDHQyjNcNPbFFgq51yk/LlSQKHfr2
tqe0BQMBMm3DJc2JHiASE5LjbmGVQo+uYIfQs8yKRmE74D05X7Lv0w4H7A1w
tVS+PV/UXwSOiaFJBEr451aGoZ0WbgsxuOhwwVKJjocqgYpaBOkvKLjnkd09
gu6BaDR8XG2lbxxJxZnecxybyIReg2uLQlgcosxwq5gGhcfI4tUTIEzCaU5a
Cuj+IhjM4x0c2t17zdKOzm1oAgckvj0d1FMb2aHkMffEkZAy3kV4ba3UT/Yg
lkEQ3s6bBKo7LZIFFYEER0SAhc76K4aURQDGtFziY6JZ2aLZSJpQFBxwmCRB
wdK+YoeMM8d9GEuc5iDl0QobIkR55YpNqYdDM48XE5Jzn7ND2EhpC+URk2KY
dNvF+/fGYQSRJL5ULqUrIFYT7SnL0pF7T3F01kGg4KmwkfKFGhsOGW+Fgshb
fyuQxv2F36dca3QYVBSEdDx7i/6Ol+P22PYayJeGs4POBARezj6Xawfci10L
8J2o2GM6e50hboxHHPJOPYNufFRs+4bAxJaBMOT0LBS1RRJxcKEzImtxHmyx
8dPtMctJb0dlQFYKLdlmqyMsL3KE4o2ZcUbTE7mzg49mpPRvsAHijDSUtsFQ
kjabT1GkRWnUnpDdtDoogb8hoTwN0k31iDD09pKR0cE4S4ReydtPkhFpKUnA
d4KbWeX9lWuF1xQNHDKC+pZISOvwUY/QCiJwbjBtXfkntI52B+4IJd2qdaX1
fOQWRXYu5FTUSVMD7BFICrBusTPKNRQ2cFsoA7R/QNpCQwxApBUOsjjozA0W
TKUuO0Ll22lJ+sZehxBL19fwngg8T8kYSqcppCMTCm7TcuqhUeFCMCLcitnY
jrVs0g5OkfrpGTsfZlIU2l0dRKoFGj7PHetAIMIKTkv67J8NJbiDnAoBknmk
ynhRk5EKgoynHKEVLfGV/9CHXqYlRZLJ1cfGBktPTqWHe2Pc7BLCZonWCDVA
pg3SQY+0+oFLRouaDsPYNuW2RjA9IqqlokFqzLGQ8yUnPELcy+qoKUg9dFaC
ibKinC0op2gCa3jOfV0ru18MdhACyJIXkgKV8FLUeFpPECVnyzmCCKIHg2LI
xr8hO5Gh0DcOxKgkaGUFFk3GgADIwziHkSIdMnlLDuZVOKxTKpQtEQBHWPjw
nxQ1ZwTKUFOdWdFgtYTTgYnXMq+4z+yLiAfJ4gJBJFGFpNwRzSemab+kjqgw
coIHqQnULUSVXkObtZKt3MGWsHvfRebx3zuF5eCOqCVJuh8RQygoJQPOWFHL
kLM0qJM8uGNAuCCSv5odoVLD8d35899hmHi+2FOdOiIliR6UQyomcPhJz/Lx
o8iCZpwLzmlm7p2wuy9VhTPOIA0HbqArZD/4yLI2pkOjaGNjy2Fiy0O+hOog
xXRcq/EjHURtJ8Sjr/hUgeqaW5JgEQXQpygiigZ8bNiXKD6pFRQJygli2KII
Mo2DhRG3hqFrSTAdRlpOSrBkAdnGEIU6GJ4CP3dxNrA3KXN8JOZ11PCQCK0i
E0wN3VoY1lKyUDMWi0KX0LCRyEEuKOFgOb8IAJIp2afEigfAHi8uvpAkmirG
DiHrFAEBxzM0GMALqfFdcIGTCx0UXrN22shxQJkJLSkJhUAOarDX29Ejvcmv
PxKUeSKb3FSmVknXrudAaPpTsEhsm45ORSSzAmN7AbBTWFB6+mgPYy7Kj6Sg
rkx7v04faRltHk8Rl0TGGN16mzzGbPW02tHqnJgkhswoYKWFjEqPIJzj1SqA
XbKWlErgaml+FiJ5M95HGGUJPVUWgylJO8u14FHkD2uCaY6RhAhJCGMJPs4l
m4Pyk+9yEBGUinOn7aNfUTOZQswEAFVQyFsyVrkAQtRMeNREru5kQEfgtztR
GDNY/jjK424mFe0Wa1pgo/tIGk6irU2OQNGzwbTflPsKvipGFBxRpyQIwET3
tqGIaKxDKmGqMI8mJr+EAnrR/UanIptZ7hIr7Fv+ay462k09ZKdG4lkVMbdc
OxZ9j6DSRJSjkpRUN8JL8wsx0OiStvRsDMFLDGds0S2znlBpa8NUu5W+AErv
FFgfsgusNhNsZFKRZCW+qTqF8xbkL2WoaA6TOZuEheSopLM7IRaUSiImXZ5T
HsGfKAg+KCUNPyjvXjUuGcBkCYvYil7E+LEwpICO+3RXvou+iAFBiLSrkarh
bnq90wABW6c3jST6aaarHDFEli9Lje+SE7DLd3bjHVmRxc0mpA80OfI0qdPU
naxj6qAoSVqLQyDaUjwiOEzcN0DOuUJLWQ2Qbw1boKQWdjOrh9pKw7pquYx5
7DnLR8oxEx6FMKU4Dp6ewrSrrJ1ZfRZPC/SyrshT42mJLhNplx+XQLC2cyte
ghNLeTG5pJ4UjonwMWc6T7SpC98u9dcqTfpE4wm/5FdRjGkD0ocu/Spa6jd3
yZ4J3krWlClPStLVib8M47tdnYa1aNwUwdQYJGpNhq+iWbJ2VugyhjFxSg5U
sFeYVOrdpTust9TLsXYt60BnQEqnZvWqm/q1VxviVG7zdLE4A/kz5r+zMMHj
u6ETWPLM+SRBM7oi57SexJamJk/yV6eNpwRJagLOg34S1MswvjBvlgCOUn6w
S3zjm4XKza8S1KOqLHndLmR0AnMilEKPWZIvw/hzSNuJ8Uu0nRWGzL1QKWxm
VLqbOqJlV7evEw/mus+P7KIlAagQ6JnKe0Po53pprfJpU08Bii26TUsFdDe2
GTMY+iN5f9SxqWjLU+3YRZLkxC9EiW1OHJsvanmt4nH1mpGJj3BZnG6B+Kki
fLvJ+XONHoy5uT0rLRnxjynW5kiVUcZCaoDbP6tdZb/BlnR8Ze9qqpzbPCNM
DLUKaddjlUCtbsfVf8k2pM11MHIJ3HZm8004iMsTBTdsfgOjMiBdNGyIYyRe
McyloDoKCF23W9tpsOjbic3IwZggAtOdgOf+VIUNxKtAqPfOlVAvYz8zcYVM
mbJZYVnmx9MVCUOCj4w+p0Y7JzNKISiOhvjCsOyUOVWV7/qSMOktRo0kuc+h
mX4qFjU++Mp8S0V82gC7oyJWC1oQ84kMBUli33XWkU6QnexRpHHKl/l9nDwL
ikZud+O3k7vpqftnYl6YVzMnNTYpFuVyGeFyE1FQbifIhFgUgZuZMDZFCbcJ
lsa6nEMDBJZh/sIwn00ayJoknbVJ0r37+FCqqHCLXO/GeNWtiJi3DLZ5Oc79
UhGpIJ7zraz7MuV+H6PW3XBfe6fUxtScof5BvJOau6SrtnPbTdiPSVZSRA5X
fGRpNxOL/OoCzZZp8nLmccAWX5Uz8K/Z02D2tJH61fbwazc927BiR/fnkMyT
jPNsgV6AK6N3RmimTd16xEsaDPcTRFtYuwzjZ5FkN88MNH97zmyTzm6BbUmV
+fF5FTW7JH8ApCtBTjbYVMa0Oa+3MXBOv/jUlpeb5ORMv7rU4E5EkFecwCRY
m1xIKHVTMyzTz2DbcnJOT7EoiSHi2TARz21twAySFdu7vMqUR7Vh6dvseA3+
tJFTUC/TcpOE4SRi9GrSFozKEp3ZG6LGM5fKcKPOz2My46/OOWezAHheYt7S
/HcUJvN0LScXzpSF6Yxrgks3WBLADGjrhCazo4VVV5AKolzbAu0pteenbGS2
qouLVvX9bA7D94lHumJAEs/yw402zCBGj3fLbVdHbduFyJZxrBNh2001rucI
5nIismmVNGBbYKXzF+3ubPi6oNszjxuwk13WDAhZ6nMTsoyxO4v85ybvhEpM
LcewVHk0N8OE/Td0O1PpULs2qxsz1NJQFsiUNi9b2UwVxMi9n41Pq8/t6XzM
kqYts3KGJ+dfJQIlE6qInLVxm6XEZN6dE9OUmwD2HAtnQeu4WoWwzufUjf4G
+2dCcE4VmJGvnD435suE8cX2LS+ND5M9/w3iPKPAY3xLwLeF+0sqsjpVxwOK
dbc1CGJqKl7sXWkhh7iSoxqZJS23nFv65uvGQlCHNWB7Xo80Q7nyqcnxKbJn
+qXJdeb50hTDu4lvJ2vBRKynzLgFjSoVKTSZ54jG+eEormkaJ+QnjKk4XOX7
rW1tpoS08GurJbg6TslfVYI2c//M4lizrpCgqQIx3ddN+D7h6azNy1kz8pzu
3QzBphCrRDshNtez2U09xgx1akkWsgs8f6LisHnE8SNZcqxNvtWiJqFb0l5p
ts52S9sUEHSdtYJ6FOZLnyZf+tJbgZ1r2bjE6RIvTo/bV+xpJ9LHgPjn7XBU
1flsEVUCytqzwQC3uTu6QHA5GqtWrFq2DiNj4vCGAqrE26KRti6CNHPbrYQq
3UoDVM65nBt/MttXgdqMqw+OL6Mxbg9zuLMgdoggnfnwt7c0G8d0IM+AEuMZ
c/CM8akAgQmZnxiwNSS3HUE6eCo8FMC3Hfs+Utcu2Q5sx9lCQG/Uh5E8SB9C
dWs/WUA8EbZm4bYLEp2kGO5wmkidtbMasq0Lvox8012qf8XCIt/G88OOI0JS
oEk9xIV0wBVjaYgxhfQmS40xwYHyme3N2pieLq0t3vtQM99xr+g0o7zz7Bsh
4mRZuv3b3rASTfO8XuWII7ncntAxut561g/+agq7C1sJohPYRy5xcNd5KkHE
LDfx+NYGsHhuEZTlmMgMLNeLxBYxpl9KZJnJmEfCtCWTos2dvho2AIn/nGJB
QCxb72ZMVIXUyN700Eu/eETC7gVo1ARkwVYMRm6alq6EXT4hPF2GHHfpVo9W
6ogjKcTejjm1NDdXGrKo4dvOSk+3hKlSDpZebTFtRw0AK5KvFf5SonPMqbjj
FJ2UNkSKHh/HQF5ArSwOBoIyPIyBCrkQiUSImEOxQUufMFY00uctfPTqttoG
WBhGF1KClOoyiGSASGXhXjolKZf+cJ4TGs7TuqNoe5KSgPicuTFm3vZLCusK
A3or4p27wGPMFwgLLxGX1k5VlB/ud0t9akWZIkG3shK+0vlBCegVirUh5k5t
O7UZA5atQ2S4yU7HY6pdHPVmTEJiZrATLW7oatBxWZMgjR9kJHmtqjs+62nO
6CG4Rj9XCbbctbRlSoss89Km8/QyzoDyDmFpPy2++hZgK/SwXQb1ReyC4yAN
NoSUuGGRpa6JUOqsee5YwMM2mcgjeS2GSZ9jCqPqmj47DmlC7HxZvkSgKCNU
ELRJhu9bllbpxpnbK1QHhn3oYKXNZt9DDTLOE6pbMYwYxT9d5aioQZ+RjGCy
nh4DEJ6QPhCxRU8IUu1/PMtQBXyYSLrLC/Y4oIr93OJx1jQsIXU8BEJSjyiE
JZaIgpcqu7SL81z28q3lqWMjudIh12xHE0JJVYZJqM0MAOksiB2WIB2jk5ya
3oY5eTHOT9vtLfGE/aUeho+JmOGMj4iVcYBaxN4la8WIpXwHCJIynfXq3QqX
E4BaX/pVGk7l7VJ/UvfeMQJL5IgBvtXx0SkuMUUi8LorctOLGhpyD+VWVN1D
4BFfWlohNLFlkoTVTbFQBY0BKiza1LCEyQXCoQ2SyZTUUG0CW/e9868sBZB3
5ohUCpZH2QFpIkCOeMugbTCQTKAR34T5nJWkM5Y1nPi8aeK4bGmhLUXErAVv
qU9batYrJbRSJLYLYi0ab80FZmxHbKHZtuSpqLGzq2Mh1R0uq72nM5MqeacF
FPsI9KgoiBRB6APc3GJC0j1Spy0Onaj59DtQCdYHb6GXRubxp/FkCfUL+7Ix
ef0M3/a53mNTKfS+F0JkjSXO0Eyytmo2vkWMwFWajRo/I4xNjoUi/zu23O0H
RKZRy9ELaZacb9x7gIFcg7YoRuY4NvuQiy385dNFssej4HJHVdJ6VCDjGstH
eVuA7F/Z6YTxyqsAH1B4D9x2RBiipeHppcFjCtcsNCQdPWgMEejgFE8SZNaV
innVasSRfZyAHG6WVvAEh7ptDxfYHYYU6cxnv9zFQU4txL71c/BTQvmpUYo4
VT2UElo9NB5cQCV2XKr4pI53EFRbKehiJwTTb+LtgK5iOEs5c/HxpVF9VOhG
efFHwH9Eh6qJM9ZhNBwoFkuUdZNEa8OogqMxuNU5VzDbJdFSYIt048SR0unS
9zLm4Y3Y0rPVvdtO+kI/0RNiJM5zPP07pP/WefU1j8Xdis/djImH2KoDN5xY
ZYn20roOyB3XBe60IYCQa5cFK0/Ub7v8SoMXaxBJmTceHibQ1bUXM1Oj6yKs
YYrG8/5urD5ecBEgVi0TRoOFytaSww0F9gdN2Fv46/2G9JlUSS2U1LORbjsP
V2SSM4S+RTtH7TTkC/syFnmUDKo1oniSR2gRTU9ScM0FwhCBsKJsJUmQJ853
ag/zofdHiKs0laUh4PUqifu2z/V62sJ4DnGsgwCZTPJm2NHw6MSexJgsmyMO
KLYDvMFhx71t5pZAa7pzoKMtnieXJU6MeIctJ/Ue1hi4PPYURMo11a6VSAHv
m6BCKwoHCTK8wObIxRaMyjLi0gRUfRfm4SNy0s5ri2FQAEh9ZBTvWVZglPGW
yY/UCzsRpw2eXcGMjrFFwTL1kFpmQse7uRW5by2ciz8JIKk6FJiFl2uBRd+l
XmUQWmHi7+JAe3Z+nHcrHnSXMts1RNFjAmxRo4lmznMDH3pLoicburT/wg6u
4zhS3yuJQ8ZYCIj80jxY3ceumQqT5Q7EkPc+1sJRk2A1RSo19d4cBVL+nukK
XfJOnmjjpF1lyXUxQZr0HimkHpuBtgEJgs6NqE7djhZoKisQMacWC2+QPtux
GiWostN4zy+fmcZLk0lyoSlvk9C+Er57FKhVsM5QalMPlz2zuOtrAReVVEgE
NQCGJDVp5KP0qCRKXDGxOni79Ql7moEogW6c2wDNrHhyQkEHB2gTyqrr4umN
qxKSdveoX+C8B3fLbiLB0UQhpui4bGkkgkNKXaizy2UKg13lyEdPf7gmjcqW
fGmtXsuWwb2gbseSjvYC/ZKz0roRMps0Khd3M4CCEjKXaOxQm7NmPwWR9wLU
nDgBzMis58TwrXlBmaI5yDoTjOFcxldoijwu3mO4CFgeWVHwySEv1sdCxpGA
viMgslm2eiKYCFBWSgfo8NKcKy/62uKydCP1YAaBQ3rlKcM1XbJ124OfUBir
HVrEPTfReFjLSqTFU9RCo4CCb2jDuOyGLoWrOUulV0AgBuZ7P2YiQHoIx0Nh
whJcPjjXth1B4T9dz1HaeKQVl4AkVTH6gHyBqab28mD4yvGnMbTiCs6CHqGU
IKbIU+snK7NdiJJT5AKAom6HDZAEV2epLSH5pV7XGjyflnpgkncvFibLYHWr
zpq/3NhI9R9XYfXIQfGuOAZr5S2rVzSC3VKb+QmvI+XQQVX4xwvdqWm4Ulqo
QmEN/Vtcq2fzKkuqp0I7pOVYacDdZuUUPys1kSyPmQupkdyJhAQCUhQsXpQR
Lom8X8Ow1aT9HBcQWGiTe2PphbhNBeWU/Ng1hO0GCSw2/oySp4+0gtmXVkfG
fGHEVADPmZNS1Xsqj2xcznilqUedycuZpxWe8PnkjC/orIJ3yDge0C+FD1+f
WNzF+Ny9mIidvvvgznkrWw8vkZIUgBEq4ScqWAUKgP7Ne8uAm29kWO6WY+tF
1YfO6ikWofMcLV8FF7zCav9AQAn5w9beXbCFytpELGq96Nfhtq44zkAcIGsl
yiJo2g6RdIsme3CLb4tcUCoasAl8NkM/hKmQLMzqmB1yNoLUa2VF3icWNrQx
LkaSAStuwKQNQJOQueHYSgn2oh8aQnDe0QO7SBacISuybaV9OFG6D8HNpGUy
0HJ64gdx6Dlx/EDA2hsRGSJq7w+uZABT1+0JLau3977xZ4VUYtNJhayVky7p
ElCSxqmHVSIUTGlXIXVBZub4euCol0toWHwlr6vSAzu9f6NOEnvJtFmQrKTs
UOPbOAxuMlDajgI6zfpIKrjGpzSdnQGyhpMNrUIhmy+kVQwWzyZf0Z6urQwW
ceiXftSpqWorivKUGPJhFNK2Bc0o6Qrqch+Cg3GhloSJi/iYswxdwNb5Q68D
hpFhBy1wUW+TrQ3tilJOppLmhEVJ0oeUE4fJxeRLBYdyJwqvMJyJh3cfsTEI
dIKpW2OU67zrtsrLdOHg7iiIgJqngUb6O1ZF+VDwxZ2elxDSBr1FAvZoSFqZ
Ni1nUdPikq0iBiZMcjqQjCMXVIpXbHkOt/ZF0iKSOsnhW+hvk7yQ/vRxOZpf
eEXM19RwYR+ZoHtkanikK47uFGLSUsS3XB06k6YgqlKaQSqtIEu2CmkbW1bE
HXWWuyymijTqhAy/BFHywHHlxjB/EoQVCy83aeEDAqe9tLpmSwDk1VZj3TL4
MeLS8gXQIKdR+ug0m53qwuSsKgSIthxCJLyNTc1qJ3VzNJ6bsa6Iac5EVnXa
Eq5YADPaoR+A1CsTIoxZcnvhp9ms5Bd662xot4ic9M5RGWt86FVeWEK5r9Bt
dQjlxK+3fb1S84TrqSfue/+zD37g2QcPP1/JmTe3afkrMri8fxtxyWk15d1N
lrR+50PPf/hXPv2rv/65z3/yU5/6vh/8ofRIy5Pfiu9tMWwThrU3uvNKhSY9
W5n3ys1/1uTm5hCCvzMZgsnr6Wfe/VMf+/ghdofrMMlDj775lbCtvdH3217X
pz24eXD28PjB8cMM07DXLHoFw3TzcmfAFeZ52XPeynVesnzj8PkGx+Jux+du
xORlXWLbrfo7UVAynjUC9XK3rDDl5JvZb2Wtc7x4ZZl284ov/+KSd4sw3lCS
vg7GT6348q2aH3beJK+w7NjO7uuN6q1CN//g6jZUbtNxx/u1Q+C2Zm7p59kz
zGvRTfbcDoZTi97x18sINyXg5kz3p3JW79+6YN7SJnQeitsD5BuoG1/L6yaN
vSlSZ8FyU2Kej+1Un3PrujHpOE3Vzi7xNd4B3ezgyzNgNq3OtOfrkRRStryj
uz3f5wM6ff92z9nOWW5qodtw6lZtu8U27BUg/CtC4zjJ178ufx1WvCubjVsK
5S0MXo3j24KNp+Z2sbHPpw+LTTs2vdvx13HAsQ0eG87FtvuDzz/xx1946o+/
eLze957X8oqH8Q++YXf86jTgN37p272L9rV+45fe4gPkcVv6qSde89ufedu/
euGZf/O/fhdf//x33v6J/+SNi63Wo017unN88PDtYNXhOnw+OQjHfdj4+XQd
H/nCU+NlVsn1BZ9txORgcxypT/3iTz/y1BP3MWhlIzcujaceXUy3i0fQzM4/
+Px3jF5viw7zqcfvY5M+8eNvHOJiS+cz/MNU7a98+lf/7M///P/T/zvc+fXP
fX6RTdp0h29ffPGfGowtIN202DTZsGP03dST5Yebh6++8tWvOicXp4tZOjzy
yU99ajDmeDJ8nAd8/tDzzw9f/dTHPm5kEIRHPE+fD2u5MUqG0Zj5/zustaTZ
DrBMjTws9MXf/M2n3/VuEGDT4UNkY+t2HuZ86aWXcggOCBggPAkYdRiQY3eY
6mDG8TTeoTgNPsA4xm6Dm5FLp58U4hbfkj585GMfH1AN//d7X/rS08+8Wx3P
KXBE4ODyn/1ZYfnh/uk9AokVlm4/9Nwx7ocxo0ZtxWz6aWq2ac2AkagkC+Pg
Vds/8ub73v721+0e2IF+TEie/GR/e//+6adf++a33L/uaFFeXfiMOd/xna/9
D//Cg+39uzjnNpDk+Br3dQ9ff+fTr/2O73hte98urmITLmJRiPMoMu3sPK3Q
lWHEmUOFT3CWEdjwWi2vuKxiQcMm1kqxoIWSdzEWdxk+dzkmYvwCAi5rLRgK
eDdka3AtjkzS2lG5McQkQORggGujyEtTNA2R4A+RYaAWYfU0odY+GrxpIfti
rTdpAUkK/YCeCKDELtCAHKciTlV1wdhGbvNPuQKeRMhWWBqQRJpwI4oqYPEl
DgBPjfjGUUqEEU8H71CRtYULtKmymAEEeoIJoZewAhPAAW6xyIAKN9S7ENY2
WZUTeU6yFpwdwC3wrWWVEC6xwVSFC4akHFmMNOYQIyJOY3QpmqQLZlSWiJyb
UWQ8dwKr24WsWwpyKzgUF6ekTaJ54e0udWuVbhcGnFwT0c4aK6u4zgyKt0DL
JOixVo8PMhkkfK3uHbQIboK1BMWmTbipgxsjm7LRw7cIKwoDQwpYYRKFMR3g
chyFmu6f7FlwxRme9WhCfsfgah0M4eP7qh4Vh4Mxi62GuyC2pJIq0mgbJQWF
Y6MWctA3McvStrEqf7Czndr8pnKTg95WqdHShUcWQv6QgLYJLfJdTRq53Zq8
hHVD7TDvEGUtOikXMhkWrkKx1nfioK0l+wLiieyVkioWlTq0CmWZjhWBiqbU
eqWZnGCUgHP6BBa1o/gkni8AcugEOlEqYMIKn+JI6C2IbzWHKc2dRdhib7RV
c9DY96CWhIyV4DY+Lg/mdE5Rxq+5hfDEpzCJLIM5KC5BbKnyWlkpOIauXgof
iUkIt2PFLV9oNqS3ISg2idhyWpUzyCnaYbmIVQtmBrRJgRchvltrCXhaWMgV
jfWzFR/9xENWF0IuBFtVZkOGI0ip0SYcurwBieKp6ZN7nnxmm3jLILeWcVoE
LaGIeK51JD4+yYa1JWlsFDQKih4zLqKFpexDLRecERvclwaAzsNjYlYntJoF
nHTiheO28FqGwLWwWaQsHFO3JuBjP7PYED1O8/zxF5/yM/nPfvLNvMph2Puf
fdC//VcvPLMgrThVzPaf/87bfcBTj7+GFP748xd/+pFw7J/fArzvPQ84T6gF
bQ/GwLCfe7PICykGjiy2HT8ycx2GjTVr073/2def88hvf+ZtD75hh0p38n1h
qnKYh3EY/JJweAhO1jLmh+u973ntctNJzlq7/gsK4AmHvAWjlNm0v/elL/mJ
8Yeee/5Dz3/48PPweTib/cpXv3o6RpacPdz/8vEMuaUq3HKRGgg/HrmzYpyY
70fuT7/r3TaJzcC99Kb7oxdeGE/gn3vemTzsUPz8/zBm4VukDQFiGX1YZRhp
5//SXw3GDH/BPnWNB9rm3XD+f8AtDDtY4kfxx3N7i7Vt6+S8emFn0YefQwgO
gJ/+iv75g7M/9bGPH0IwvBE4WDiehxvCw7MPPfKYI3mY4fDIMXzPHf8Fgcfu
+37ghxzVwwzD+f+Xj0EZJ6Fa2Xq+Hz54iFl2PDSDwcO6Hzmu++Fh3eGNwMHs
wf2F6wnq2vHzQ48+5iMPbh4tP7Du+eePbwROAB7sH/75A6M0WOLn/wuivRs/
oO3q6n55gVh4PTrB+My7Xvf7f/fJf/lHeNv4lb//zo/+5Uf+g/0OFdYrzqZr
uu5jf/nRP/ndd/j4f/2P3/3Cf/v0e555vWmmX5Lvw7qvfej6pX9yfOptjz/g
c47lgA5SVtvuJ5974z/7nXdwLv+jLz793e95/VKXGJsx05YwD3ekC2/OqZHL
86Bmea5xuSRfIj6BKtK604EJWhdnID67FNyw1lj6+YTB2esqUcTibsTnbsZE
GlfqJ1t5auspQD2JfPbLHLFHcFpl41nuFnhcfYkj2Z2xt1z6vnvQFjSBJsIb
Uhhq7UbM/RE/VcaKZPmWj9raJRSs5XD4VsJbqWURNbNHGx7rdqx1BJfMa+0A
qSG0Lmvjv47gi2tmmHeMC/SNzgqjH6/CGeGw4ChyPGNZWCAWhOGCjLeq6rO1
3m2CQog+IWmZYv2D04bQ2/iiIxoe+jSzc7Ljdb1j8WRxB411tqfwJmFj9tN9
KqBCb7DFrBV+ao0g27BdQquPnSbY7sZQOYOdfmdACXe2wGe5oXCAtyYXnMvc
mm5bZt0yQmc7C3DAGI7dAQHuiUM7Dk/DpTOWGuOlxkUjzjuy1oPFgIi1Hkrn
CbfikBc0YPard92tSRPnSCd4mrWWHeOElL9WEVyNDXY+s/LHneekhHx0YKRi
PqMMcbq5160Gi04htLJwiUR3ilJC9YKUVkNmjsMF57wDSzCyDf64SI0VVg86
KbCcEJK2eIFzNxdOSDPMd9mop0w547C8j5AiReq3pcDR69qFxzrI/oahE0d8
gBPPhcU4QyEGklADCgRnkJ9UjLHDsYmvZRrufGY3Rzs1jlaOQUJOWO1GWmtU
OmhFSFs/BeJC7IXGk8gCREeaXi5bVict1h2ybxuC4qoomeuysLCnlsIBXsga
qi0RmF1AXFhVXL2dxtwxUk1Bb9lZ6rH4kHLa6gQvEOCiyflCtUyzmOUO4DPz
O88Ib6etHRJ5UT2BGJKqhC7LQCZkUAi8xjH/KZTqTueOoL5viDxbawCCyG/J
zkAnaSe8i3AhoqIPbfGyBZGh7ZgHjtsYlqNW/eo8FguGSxQgMIpq8bg6Z4p7
4S0BN65meYo+9TAtqLJVwiBq4pqmj4mY1iYfw+77mAWhuuCQUS0Ako7PRnXJ
K4WIG4fbm0NWXaqMLDLGc784lVD6I6m4iql0bGCDVDpLajuxkQLEamAVkLYV
W444n42TXhlcca8XcODk8mSXiIM2QBux8PJBBKNC7C23Fj5XgJZVF5tfLyhA
z+sIGzAqqod7Qcq88EZ3Y62XbAd0q06qznDxeYs4q0s48r7bcqnkM/Pf/szb
0NGlb08n1Q9QdTte/HbAlxgmOcx2ztH64cHjKwB99mChnP8fT+x1/+7NJwXo
Fs7/bbkzz/+HI/0Fmj2kzwHJJx9/TR5/uAlZFpXuwvn/b33mbWO6UWIOroXX
CoPlVulIYC15P/Kxj/shv4MzDH7okTd/8Td/8/Dtr3z6V+3Z8SfO/ylrFuTg
cMf/1Jxq4nGJw83hgPp0ikvPaqP10COPDbYN5/8ByQ899+HhoPjw86FHH0Ni
bmHnwPPhuP4w0o1BOdiM5/9kP2pT7G91woMBllAtG/azP/+p4dz+9M6iXWiA
WMSGr4Z/43AMwSNvliKyaQ9+DSftHzn+GwfixmmM/6OGp595t0/oOB+idvj2
EEGUAAPty8M/yqCGeaEXxQ5e+7qDSceXCz/4g14FPDru/sFmUicf1h7COlj+
Ry+8cPgcVPfwYWDdYZLh9ZBXwGF+/P2/S6V5J1AHqg9uXmE30bTdz330sf/3
f5lI3v/hO1/38PVIAxPG/QO7/+nvPTWV73/jP38zKxLnrxv21z7y6DD4rY8/
wPeXWOj481f+6lumVvnJ594Ysj7mNc0jh1osF1ugXc7jpz2s/MEXz1lZyHuD
rbNRssMeSVbR7ubMtUKgIey2hcyxuOvwuasxgS8acV2XQUClYMVgWRt1OKmW
W6UfuK8TiXCnRMEAMnZADCy0yJ4NyFehSUHhn9vwwfu6Tn0xgQ0HawiW9Z9u
27ZV9HxDgceDBDGSGCAIeOyspaRjCk4Eo67uy+IkIXzxPtMDX9n2x+GKkE6U
Nhnmx25GuYIhqCldsNbrOH2FnULmpBnsYeVFaZi+4MCpJm9ONy2SCyHg7ZjP
VmSHJj4BTkc99FS33EqCM+WCApBGEZJbumMbWDbYnbVDg5bFine1mXgaSt7t
EieJ564w2GnidKKNma44LOi8YqFR5pMWdra6z4ITcJYs8Jmxe5WNZ6daQdmd
+ls6mugIH9oSbuiwwo9osBln+dKo8XEEDdDPcaesE7qPpmAIN+8aOiGzFrKk
FZJifHGAJCPCTdENFAKNmp9mOLs0d8jIMY+2kfMTtnk3C69z0lEqiSNIijQg
7NT8yJ3EUKxaSmNjDcDWnYrrjouixHdhEsxDjF0IJajP2Yqpfm4DBER4/dyJ
1HUrkpW0pV1uWAyR6ZKndtBHqtsRmGPh8+QNm3099bKivO3YKhjjuHmL6GU0
OS5xjPAKOHKyKpyPpxMhp+xb2lMLVcw76e6MaVtyX7dCwknLd/rMXO3I/agn
6jjJIJ38yFGAWE55KoWyaE4WCZ/cfy6EY8KuRVpaOlK2Vo03BDglWc/Fr2CA
lL+oXcWletIpSoaJhUlJG9juPM/fAmSAryngN3lfs4A9UdW1w291sItVhMtH
ihfUqyyjwSYd2drknUZT1qKcqtTVHaEOTRxJjSifVBMNHDQ+c25ZVOWn6bbk
yBaPF25qHV+aX75DWaSRwezCR40FW7Lg8SSJLAKs2wsdyULhI3mhEE1Hknub
pRGJqI7PAY0Q3LGsyJZfqCirk4oGeMPGQfHXjIhJUYycv6Ye/IkPPOyHUX/8
hafCEoc7fFr1Cz/9yPIKj7/3PQ/ws5j5qv1PaVo/5f7Ej7/x/c++/rOffPOf
/v4709H6acWrrS29/ewnH+Nzb7J5u4xebIeLz/8P9hx+ra7HDjYc3Tw5wuf/
B6t45G+l/2zR8T+/4+AQDv7PHHj84eYyRXZ4JKB6+ocV4tfw61PptcKAQxnH
4cPwB/bj3+FXSxeH2PbH4VXK0HXV8msCI+0xXi+++E8P97/y1a/+2Z/9OX1l
Hwyon/35Tw1/YW7n/+Pjw+XnwIefh5Gld8OHwyqHtQ4rvkjGOGhffvHF0/n/
li3hK7tm5//Ph+X85/BW5fgPE87Iu+Ew/HgSPg7bBjH8pHo3/BwOyQ9LyNJX
PMN2tPAKqw+gvRiDUhSvEDu/8MLokcemqDWMeemllx565NEQXLZ8QZjjw8na
AeFEHol7iONCECiCsqSDo8Mqz//oG4Yc+RdfeueP/dDDr3v4evfA7nve87o/
tBP+v/+5J9etbLs++9ffOnz1P3/h6fd9z+sP49/4yGs+/P5v9X8+8L3f8+AU
Zw4E++hfepMn5tsevz+jNzz4c//ZqGO//befeP7HvvW1D+/ve/3+Qz/8hv/j
H77r35z+ucFbH7+/qBppnkFw5hk4MQ8Ly7Z6apsfL+cM3+Irtu2qGHkbay31
kYEJec67C5+7GpOlzj9jLT5fFWaU47kWLNO6payxqdmYyTyaNj4MnpktenQV
ZkYbM+V4xn8ZJ4kzZPv12uZpGcylA3UlA8rPM1SZmP8seJfRSPsVvm/nYJ8w
IKdYGb5Zw1BYZ6I/DjBWe7gzY6s2Na44t8SsI1M0mIErPRWZOaNg7ixHKmJ7
JTZPgjydmFMuL2h+urOdB2fq5kQSxWDdBOxMydgqCFtPN2dFTaebQjmlcssJ
ka/BuQpjtuVClV9Djkzk79lX7ugWMbIR6ikc5uNePhssKSO+nPLrKkFNv+bE
xLRFdxR0L5YwCtY219/wSOHajTE6oyLPf8saMp8yEY0AKfmShTdOqCKzFKBu
WksNKx2pfBwxnApoclN16So2acFC+ZDq8lRQOHFqmiVtieJphi1yPiag5P5s
KzsPI01SUrrQK7KhaITqLScp2HIC0hD9WlKuIjFyuHNMM9TJkZI2gDf1SHlF
NnjSwkV6EGuNsBRiTuYVpYE5kBWPlwiJmVNmOZDzquX0HwdMJcLEacDUnRAm
7hkYitlYVGpT+R6fvelauuNXYnk1g5SAMhnHYdUOIk2I0rNUQBb5qatYvJZK
uRCysMQMGsuEYRaWGTU4GTNXfXhap1PkZADkpqnmgnuVRs5ssiZa6NwIVZ1h
FoftAAWl81b5sMVnD+jxw1EewyEzxe74IZ/h22zHb/ndwfFo2iLy4MM7Pgk/
fH7vdz0Qep7f0n8dcHrcbD4xM/z9P5wi844uANX8iIEzGJbBvNry+b+9wtg6
uw6O8F/gjwOuYiv4B59/Yhhw+ODjh/8EkBkgq4fz/8N1QJLjMpjxG78U/2yY
cODoY/LhD+Mn2AK/wv3xbPbKV+cx9hTO/ykEJxxefPHFL7/44q98+tOHAd/3
Az8ok5PvXz79M4Ff/9zn7Px/O4bvFPfhHPjw8zDmZMyWk2hpsBzmH14Q4D9o
ozk1nP8b4VHR3JglJ8VpgJ//M520NGyHf5jgzDenAI6nWECJMVz6g36dFhr+
i0anA/bHaEIP7nZJrDCeHH8dQBvgSodOzvzjuvqKZ7Dk+O3g1zFqV2StmWfD
xkP+Q+xUWNjyR5UwUbKGuPibnQH8pZz/j4+jFhyDtTWebL1rJWkd/txou9n3
X/0H7xwO/x9+43447BqCsmq73/v1J4f0+eFnHx6/2rRPPnn/cPOF/+bp7X07
Mnv7+BP3/+t//O7DV3/yu+84vmW42npE3vvdDz7/o2/4xf/i2/g/GVSe/w+z
ve+7R3n54q8+7nwbHPyPf3h8YfHLn3izZZNmHM2zvAKfwzyI1GY7O49UAcdH
xow9yTZ4kUpzPPHwLk4/t0a/s9eSfBGmueBTdtyN+NzFmKQdASlhPBfyya1b
uDLZccdZsorSfFpOmk+xLXT1apXg6TLIep7WUncYNHHtBJf7CymGOMcu8crv
p8J6xatTcHGH27Zg8zbcXG70wRJVcCY5zrhtGATmXkBeGL4UeIMjnCxUNK+C
MdtlIMYmWMi+6yYldbbSA5Q5osDqtoLWcmSU6ss4MuCv7XcIhzaEka72q+Jp
/ZKTZ7hDq6QthrL0aruUm4HD3mn4t2r2IFwFtQDOkBrUkm2XAguLlaVSyDUi
HsmF0mZUGHXEjFmGm0QMMsYZQj0heaq7bBJwFIhkW76SJuvjRZ4m9ZiZWfY+
cdErRl6VJ2dlyNZEoeVVC7g2ND9A4Fgg/alCJUm5Um6ETLki9SMHl9Gd0i8u
ARip1UQzS8cvQ3yZ58FU1wHtz3GScKV1p/R3nEfvMIAb6ntF/bSgeIrZDEtH
I6mNpIlkqICj2yVwYOmgXfFsjANvi0RjlxvdCjFW4guR6soE8GobbQjGewfF
SR04T78useJWxvBgSJltnYJ5RfVs6dsQYs1ZKls0Fem5aLKYRGmixhC2qofp
PIR7DH6RnfuNDRQ+ZMTyyq21YUK2qV5X1dgzJVhbHkRHPm8F21IfSF6WDh0+
OFwTNOAoMwJGuWXM4sRkzkqENUG9CcizVayuSIr0YKJ0rZkufeNBdD1PIQjq
2qRIaoDicbEjI0VhkjBusNgTAqTEQLfALicRqMy2k/lt/NbnvCJwRLrl5Mpn
i7UMqbSdAQ2PMxNCpFCIt+LsVUhM+AIRCzZnqeF8mWFpYqxjyOOj8kc1kL9Q
8l6xTv/IAc30QIMY3PTUqPCqY4GKDhR/lQo6d4lJgtz4LXrOoBglmSXEqgAo
jsc7F76xQt1koWPBOQ3etHxW/+Tjr3GT3v/s68L585/+/jtIeVr+E/2f+MBD
owGb7Sd+/Fv5qcM8JFZIZD4G/9Pff+fg8oV9q3///9jw+AV2ASw+bk/1ysAU
48JsuEALkc7/w+DN9r3fdb+8H9Fu5PD59Q/3/u0v/PQjfGh/AhPhuDCS5PP/
P/j8E1HxrrYHtIvzfxPMC7FkXGI8/0d7oNdme8FqYzDi/H8jvl+QMQu8JpAJ
Dz+/fDr/f+iRR4f/QE1c9AT40+96ZvgW5//aMNs58OeGo+bTP2Fwqvta40H0
8J8SOizK7f3wwc7/KXMBkRR6S5YtmQRyBq2m1wpDKIcQcA0dwzf8OT2niYRD
ODlSEafr8tTI9gtOeYvFYBid/7NScY+3HVLS4IL+HPjj/yKDYhFai9HyQ3Bf
Ov2f0WNEZrD8MM/FZuv5JVJmZpipL7L9C3vvQ+f//hRXfwXZ3LzYtANFP/BD
44vIn3zuTfj2asiR9tvfet/w7S/9FUufq/avf3SUl/d+9+vZ04tBfD717WMK
P3k/mHDV/osvvTOk5HC99fH7obqE3n/9S8e3nP/b//iO9r5+8OLCSsa6a//k
d4+z/aMvPh0Ve5OiYInpWe/z6KKz82j5dnzGQlA85cK1rQMBzpg9/Jkjde5a
wrqLDdy/kG7hrsXnLseEWohRQy58vGmUVY3B1JMBG36KRBiAsEIa+LbcxRVp
y5XDFaTGb4pCYiG4E4CiTm/Uk9HCC8gpNWmYPxVZqjXShsUBasOmJctRFEjt
Q5/DvRwwNJz1QY4p98NKKiGzkyT1CWoDFyMSbUFVGKXlkjKFH9yEYLVs2AUi
tVVHMh9aKNJAjyJSoUmwfLwa05N8p7ZBMpqhC5nYXrALZRUz0C40BBZNXVRi
x6C1F4KGJztlhCzXjjzfJBe4OeGs95+Ygb3ekoIFRbLQc7BiFrSYIfYwremJ
qVnRCHkzgJ9ilbDUfWGvRwstZwPBJAdNtI0DKZsuGEaHJSSIq9PVVpajhjNl
OmdNckFyXFLsIgyjKIA2qHfMzyw1UtqQj4KAPijGBBvkV0wlg13YTZM3Vvg2
CqZGQSIeUdLQb9KzVrmQfZ5lSEZlciHOY3KhN3DRKDkTsi/KqUiZfCg5QIkZ
Hhn3FGzVRpcrpEb4drFBs+d7E2HCpgUCwiV0EZbUWwm61ALtCq5Ke1RskUq8
Yig6wuQLsYTX1YQKCrwpYsHMFNlRMYk1msORySwFpYIIUZNQXsBavTbcbUZF
krZKdY+SJRNvIrn4TqykW4o+TWsxkn7vBNoFhfUCnnKPoemzIXZpptPkKra8
i/GYSrA4ZFoT3aMrteFKB8jIIKdWjpmum1Q6x95mS1rN7CVggwIH+SXtwjkD
F+XQUYcaBO9ClINscgrQ/NJmUHSQC3l+Voygh6Q2VwxaK2ZbJrqnvMuw9FQY
A/lzcUREWrE5wsW8BavJGNU3Ju1mbNiEIVE2lWwDcyIPk7x4xfceMumPoyrl
D6knHS9CLPhX+pCVgS4Sc+pCncYs6fCrVcTIeBYclo4r123NC25FkBpkraLk
W2Df4FArRRInhYyZPxrglagSqCBTpGOQNc9Z1jrQRqalGfg4+niMb/76CTz/
DbydaR+f9b97P92/9vs84fGfDBjTggGHR/gM7ceefd1wijgewU2d/1NPdTHm
0Tjhr9Ejv2aPOCb0E6DxOw47/5fsOFx6/j9urBxYftnx3u+6/wAgXgd8/JEh
msFxx4dP+F//cM9j/L0Dgz+e/xPxxKmr8fT7Q889Ty87JL+CJQNLh4PZiwCv
VUN/xM9v7WBn/PZw8ytf+erh1z964YXTEbGkzDDt8K8Dnn7XM+Hv/53Vfv4/
/IX/YTzlI/LrMP/xPzVz5TZHYg8IJMy9YhoNaPXBpA8SaJ7FPvl4/k8VfCKt
WvqLeuxc5N1TMMz+ccHxT+ixD9U039BaG9znQ3WemdunwWsOsZ/VD/+1qI98
9GNOJ0qN1ng+TjX+Lxd89GO8kFjOmTXSXrqIYfCDjzzqOX5xRef/hTS1cIGv
YYnjf3JthOtnfmL8D3DtX7vPKbzctsN/0udLf+dJn/yf/HdPH+78n//wGSqU
gO6Zd752mPCvfeRRXv0Lf/Px3/+7T/r1z377O8fz/7fdn9X16jXd//3C8d8R
/JWfeMTPQnnAAw/tHvu2+x557DXMRpyScZpb317O43yYmgc95CbS9aK4SXTd
yPzMjUWMr7CFIT13LXwrsXCvq/S5y/C5qzG5kA4ktm3+LKtoFKLpR2CPPRvc
DMgwIPoqPI3c5PuksZv4SIVnq3NiJzKoK6bdbC9YqwMIGmh1eTqVaI+ZLbzg
GTYyIEQtTU7vr8NXiTBpxThnjulkOCpgZXJNIu+cq+gIIdmqi8qGcnVN1TIK
baDoQm8GO0OvHtkbG0Jq2uOD0whf5dzEhCZKOtWG7Lza2oFDmp+3PNIPRIN9
K4oDtDKmaCYn8sssyePDHdlI2h7/os4pPVXQgF6wuI0upNWzGYxwwpwN48dL
HCaBsp34AK/GUX4NulqSJNI4iHNmZjjxwLPju0W3xI4X2rAQ5g8wRniLWgAb
mFTFACRg+qCr4BS6WMuPHS50cg5iBhOHISUtJRzYcSwMQ+z9yU7oSdVLsCDT
riquuEiJQCCIOyQ1QJs+jDZLSYpoRFTr5KWNgJI8MvbC3v3J+Sf+rILn17+1
CJpGiXkxzfbK/nbh5WMjK5YFl1mBP3LQYhGYA8w3YeacC1VPOFGRWceqHAfU
ZV2GnWJVe5HiWKY5/tIDFUF2qV5VWYK0tStAjilQdoBVS+B55+FG7qSnSigu
YHwoaoISMWp8I1zoXpF04k7A84KeyrXygvSKdS86679uCrYstJMMOKgyoFZK
yIiZTHiSDnWWmswojFgXtKH8lWEXhJ5mGdQvMz+KfNpnBfynvirvs3gSDqqc
xBNJ4U3LyIB+8icZU0tDbdAbeJio/ZhSLRBV+ByK/tYL/QQ+041H3IZIhQqK
HVrZasI2zj8bOMS97sQm4eW/YNQB9tc4E8S4KH9uiA9jv1rWBYGiinhb1bIK
9quN2ra5uNwer8OH43W6eWkDLmHDr+lJ+/js1caPqX+GjrgPn30tP5o+/hfs
T5MPC/GB+enfBQxfDdO6zcfPerj9GCvAr1Xn/+Plxl8Og8dpP6vn/yqhG4f9
4hJg/pie/1/QyGFAeEmxsBncBn8JcgBheMoHH7y7MPP4gwN7+OCPH18WgBgb
/+8jHe4LRJejhSEFhmv4i+6XXnppOH9ejJEKxBih86foDNl93yxo5PA5HDW7
R37k/rM///N8njzQbAj0V77y1dM7Av5j+41BvTks4ef/PHiMrxlwmPn01+Y/
f7gjB9pEfjuo1yQlZ+Hg5Tizm4QxxJDDyAff9OiAaqGol3bZs8NsB/ufetcz
zvMkOBv/OfzLCAfW0+SCYse8ZS/kj+qHkZebYCSHmJ+9OL1MMaw83JsLCv0F
gT9Q6/SPFMY7bjmp2QbzX4rXh1+Hfyww/tOPkzotriTueIrwv4jQWaw33SiP
l5u/9cnjP7r5l3/0zMWleD18brr2//njY/r89595Ynh2uWmH/8LPb332CZeU
BSF/dd29dPqfEv6NX37bFKSH64N/8Q1+/j+iBwM2P/oD479KeOKJ+6Eqmr88
myfa4pKCzgRgdbrVeS4FxsCEnEeDLxV14wyLS6om9LmMxTlrhVhc0M0qFncT
Pt8EmAzzj3Ze4pHKl+NX0bbTHcZB0zxYDpeTCORnbYZLoHehT5Eab4YmB1Lj
pg4oXYr742z0c5Gsopl9DOLFscj2W1nfXOgjwETkdONWjT/tQ7AtxzpCSnpl
M2+47owETnQtk2UE83IbiRrMuOQoQO0vop3FryELwhIOMt3k7kuWU/Apyjw/
c6CwZ0MzoPYtLnmVGorcYhVoi27ELq74fImnpoIFyy9lkjQsZ2LKblpUB2y8
u6strDI3wBJXD6uojz6gNHhRBhE1q8w4M0PXXVBwnS3DI0HTyhzx8R6Fiyri
pe+Kw+aUREjSC6TemMXBZdIWbSnhC7KDyb9wsy8Lv5zhTBgoDKt9aghTpigN
vKwkTauIHTWhjsIlla06L2R7aGqwCaCFrp5207F/ZkqzqWqVLxStmkpkGsDb
VS491U+Lcq4mF2GtS7Y/QBQ2CBublgkgboakS/jAjEytOMMV14uN5J0lckCb
6MEIS4IEexah+2L3NSk4f8kqDmv0OkZWJqwDjdQOucDPkvuSfRq7ixQX2HO5
Kch5teVeqAxlhaToP2qE6P+m6u42NB4tmedd5sPFZdKWBOOC57kqeVJ84MTJ
jEXfldPHCXbpnsacSqGJRNJYb4ST6SiAwiFFAc0YkM+sgM0MJhNsQQMUFunw
w4SL5O8FzUxpgl2PnwzIsyV0UaM2XjX82DNrLyzJbSfVqZSMm2A5fyXJHoWC
CpnW34VMIqHRHPfOvMAkRHxBO5o0eQifQ5G65djA+15pEykKdzaMUtCBfH9B
/WfgXiRMpTPudRSQy6SQGkr1dKNTpcBNC8ICwRV6TCKfqwZs9p5ks4gWaqb4
0sdA8FbRytAlonBhu2Bvz043N1Y0EUr+k/U/+PwTvnfmv8z3g/rf+sxbPVPo
5PzJEfnLTfgP5jz4YO+k8j7BvN7wfy3ntLRZeLn5teIw3zL6Eg6Oten0M/yT
ASkilwg31xE9/39yRGwsN8fPbMbxf6cYgB+nff2D+I//jMhcbcI/i2B6DzPz
3/9/4sffgJcF7svV1v+jTD9jA+wVycab2DHclxuWst89/Z32cKb64JseFXW6
lOMXbw/sFHcju0LMvx22G+Ow8cR7Y1Nt/Pz/oTcd/ysxv/elLxn3RlOfOh0U
//KnP3341f7Y/rnASZwDX25/+W8e/7HA9/7ADzAghzEH146H8KfxOPe+dL3C
ywjagHDRRxNIgsMm2ZhL08nTzAOkR7+kWFCzjRdtx8/D+IOph5kfeuRRis7G
F7XAjY4f/7tJlwjlhWu+V3A9RRxGftDP/71qmxnjeKutCLHbSTcHYUczMz67
WZAx33v6dxk2/kiAA2KD5WFFZNklouBhPb1BQEoOk9hrhbgTxzyYyhL5+L//
Oxr8lrfc9xfe/bp3vv2BC17RJOJtT4z//Z//8uNj+rzuod1w52/+1beEKuMM
+d//wfF/n/cP/95TC48a6+ppiQ/+xfGE/61vvW+B2I32/42fPv7nyP6vP3zm
+J96u9x865uuf+TZh/+rn/m2v/XJt/ylD7zhye+431ud0Dzg7NePJrxGXGo6
j2pwC/N4mgdf4ONQXC4DLLYFvpRhTpiFhzvog8bixrXKWHjCVrEwrt4V+NzN
mKBDc8n1Ra8Kg7nEuNzxFmwRx7sv/KcL3Bd5/+xdhG4fQl/k9c6hu9zAQfRs
hKeZJ/2wbyuuxJ0FWcKyPLrAc7rXFI6FfOX4uPJbw0BveSgiI2fwdunS/d1Q
aAxP/jw+WAM1hl7pCtZdks32wc4N6EzS36GAory/oLp25Tb7bgJF0DfOcc+F
x9HiemskddxrzSUt7f32mCbETI4IVvSwuvHUVF9ZrnmDGhJq3CkA+XBAiv5h
FArvZ8BzGymvZshgPdaztkQ2dApjYNTC5UsSjaXJU1KEbsH3nVTUflzgWIl4
CInYyirecgClDQGyNSLxihwsP40fAKdcI+FFQ+XZig//P3fv/2zdXZ2H/Sc6
3+65+8s5574CgSSkV7ZBEAzii2SQhDxJ/IUYXLfTgBxEOnVN/QXcNJ6xIhq3
uGVwQkhHBWfGjUF2BzfG2JCOARtn0tAW/xCl9rRTNc04E7W/ueecvdd6nmet
tc+995WEJb+z5845++z9+az1rGc9a30++7z3XjhJzkjAhd4OQvxI88VYMfZX
Jgsq40Razv1d4PwFXU86Y+fXciXpAEs3XzkOkp1SVljWQLe3/paT/cZaoKAc
3DHOHD4pN1T+aPXhumRJahnkCQhd4lJLDUmwHIkZ5HeM1M5uYXqYp77c8PBB
nbbU2DtzEFkEEblgJ7WWkZJrBgGNndxIUMuWyBkWy4GWNhe1/aGLoCSChsR0
Q6qyywmlbajLvN1xYQu0ixCgkZbONCsxrG9QtiDUPh25luXRLwNhxmhyHeHn
U/ptAQsHsBJpogYmkX9N4UBnIorECQWQPRwE2gX5Dg0ndqnQUUkiPffQUEvD
RdNWXl6hziQQ3F2gGeN0QOfD+mliixSzSRlhKUCyxUfGRzEXieNvdyC/dnQ9
GtoboESQL0MMXvCCHamBSs0AWgQFcP7I5IvJozKugFjHqzCi2YObyGL4yOxy
97lM01yeVmTq2qsDOoeLGB2kAOWg9BLe3l8AcLB3nMWkT1oL66lw45oc8Z6B
v55EsoAujkuPaaYWJrITCkNpSIp3YYZRKGNlRPlbu49eSrRGeyaaKBFFWUxQ
xInJWGJQf4uSgRu5lml1Cx0URExIy0UzFFApUh4C5y0lPmQfF4vBImKohqik
LNo46XRVvdomKMA9Z7L/vFjDAK8FVBbZWu8EWBNEk40/HLUd84fW7A4jqRkE
x0WSRW93QZ/SNTsYQ9sRFw++7bW8xT1c8IH3YWN8/9a/jn78EwCHAfmCX/2l
t7ja8I764SvxbAbKymgPf7n9sP0+In+ALv4yHxHh2kG+5Q8//9D+7f74h8fj
M3bsnfVZ9j/j/j9Gu7G/cu8XP8s4PIaghmR/8Ob8/vXg3Sd+7n4/uXcwG7yf
yC+4ed+r5GHB8QJ/IrO/knEeDID+kPu08jpsaA9f7d7/+9KXv/zQI++RguKU
NkdoczhQS8jj+/+h1vj+/37YYYv+vje+0Ve7++MLzxy++P3Qo4+ehc12ojTt
/1889Mijh43lZ359rfbsR/7SYROebAavxmMwZj9OeQz/dyDUbphkofcx95YM
vyTn4NT9b6JCr3mHKjyk6ujmcOMxBI+e8SrPe5LtxfCbkQbH8SkXXGo8mLpn
9p8mnnvuuSl//bDHBBjBnx0kd+g1JIh5MlrySbec1MkrLHTPkPGtfmZXdZJA
thK/9k9NZ/wv6DFp1xjBZfzif/j0+Dzur7znngFSfyLwCz/1JoUUjdY/+/XD
E88/+q2HKdFuBOHF/v/w+38Yyd2Np3/xgf1H//w33nXH3a/+/KfezkoyyuZ/
87ZX3/Wq0fKdeK2pdyPIphtjrQ6R6tJxdhdpKIl+6JSokeAQqFBUr8tYXDZX
HQunUBELr+mvBHxe4ZioGaSTtEEqvvBda9hM42xlnDPu6nduXrCNfJRiFATn
wivdGX9xBRHBa8yII3iRp1MXooRONWk0mtfiKPsePqosIQoikhHwtVzgDPEe
YKJL9AaAel3gLIuF6IgsQmUQjz6T8KIYyl8zvXc+eGqwhXIx72iFfoPGhEm8
wUhbizdopSlA+QMOoYp1OOtthoV+FhVEE8EOlHveo3YDwiBlBBnD3Ymg3LDa
Std4xoWsrEKZ6jITjJIOfAYH1hGoiQyi0da7HD7O5YQ57VEX4w9LWmHRjWJe
Di54i+vX4nvAWfZ+C+kLJymd/YEaqbRvP1I12dFc0RKdt1Azd434ucvGXMjt
vI4IVYOXqzw4+ZWiUEY8SbR03ZnhWuBK+7OdvhgP15cgMK9oi7KOoAhOFd9o
jFq+C04N2wshVYnz2WapFDz+jcI8oa4kY8Woi3W8l3NTs5tE1QhM6Qz51SQN
ceetEokCxVGEMV1GNkAQXGPTXeMDViewTCHk5OfUkfZS41T9ZLOUmZD4tmNk
fMemkuvQaaR0pkykDGWpnCxeyR6mDbe1OyVGCKgkmuqGcgy7ymmWENOIc/A9
UVc4HN0Mmklq5knK4RAJ0iDuGF7O4qHihNlzFbhRuBNVzhCIzgqN+YyqnKBk
e7waEVWDtdx4g8IdtqEIc1nFQL60fSrW9Ul+UzHF1wnKyiXSdLa7iBIBDtyg
LuIGN3jrrVqug8uTKQ69Tyd8u6GTKl2FBhnJVMJw5kbxacg7odlF9lTn5dp9
I44ZkkIsNxrseECXL9+BHy+Oz9Y56ErvM9lrpRpU+Yjvt2x1PSIp6fSQp+RO
V60FSdtFi25I3L0Zk9iFScVZ3rAleVQ0aJEbNg9f4LFSnPlPAA9Tf4Z++f/+
Gt7THrbQ49a3ucn71bylv59xlewvLrYj7P+vyNqpg2+ZOvYzThmwB2Fvw3Dk
G//kKw/fvO9VYUb+qr9/Gp6nrPiWIwI8Pg9yeIxyAOrGF//BAw5stf9/+XHf
/W/kpwD/4lvfsv3t4pC9dOeGBmuVLvNj3P8/vqZf0YMLnnvuua9/4xvDa91s
x/HjtP+/P/bX7+/yqfeH/3Khqxgz9W//aSbhYNKXvvxl3y3/wjO/PvxRg+Gu
wy/zOW7g51CeOPa3DE9DhkH2HpUhGGYPu+J05GqChBo2z6/4L8A13FtieEWe
uOWrE3ft4oyDp6uTJyVG0kni/Dmefe9qWTiK89/6T0bh+vW/93a//aGHXjec
/M9+4v4py7/23x/+QMCzv/PICUD4+//Zhi/+w0Ne/+6vPPjlzx7y/d9+87Hf
+9WHnv7FB77yjx78N7//2HDj4U8D33l7Lnx+lNiuCmJkTl42TtlaXNkGPVIH
e6tz3cqRMvHljc8rGZPLjqlbwuyryfOHJicPcl1LprImtD1y/e5K061uFRlF
OzSW1wOzOk6Mc6JvvJRmYRMgO1JaK0HMLybxLFYBk9MNE8Vw7PJcBeuK85NT
16u5K6V86qBuNbiTx+rUgLoGrI25xJepfLlygPJopQSl5SqIMbEujjl74/JZ
rurLqVp2rfSPa5ZK2fzTYuS08p0I9CVROGlthuJGuMsNmx6nxjN32idFY2LA
nYx2KfKBsde1+QUecTqOeFKYfHFp3q1WwxtnNWIxvi/IwfKIPL861Feh+uRo
l3PpajdeC/CJonYFkCdStVSYSW2frJVkQFETMUisIBVnTojwCe/MF1mxTo15
tTzNt5ib0kvfWE3Mcmq6Yic5znja8bo07C5O5/KlLfc1m8BLuo7JGydXItP2
q6BdkvLXaep4ulORunWgTs1Yjlk3QsyZaJVnaFXLJhy5leifyMR9DpbP/U/P
UgU0u3+ZYVdtWk4sCibwfKEQXXe1Xl+vgnO1YU8jcKU6tdpcnNmxOmx8jWcO
r+kkLh7f7sZU2hwv80k3w8g73pH+we+/m8/86i99736cH/r+u/yCjzx+3/4M
b7YfbxmNPLGlbzaMVu1NDRcPFh5d2MXf/+PW7i+wF2b/eFxv/3+zC9aeOP7k
Kw/vEViNLowI81f3v/2b7zKoD3byH/Z98G2vlbK+ufgmob0/85EPfpfPsh98
P+zwOGb/8977bi/3/weIyHcE3YFaHZ8CPPnxjz/33HO+A7w/w1eujoQZN8bt
DDmyI5Jc2GU074Fyu2HLfXUM3P4n7/bv3773/T86PBEYfOf9/+Ps41DjPvBn
PzecfPKpj/Njgv3IX//68ERgp8YokzfyMIKgOBg2vt7s3E026dlnn93fOxzD
zv/zzz//hWd+/ac/+rGV3TXeQoAT/mMCCrx7khwfxHgI9sh4CIaDd9GZXcga
S9JDdivh8x7+yoxxbI+++9b9rrgXyIyzOHSrmgDjLPtg8ZOLIwGQ5kddOuay
nQ9f9S9PGsg7T5bBl4z2YfP/AmscSrHRx82rbvy3f3f8/zv/2//47pvf/eqV
RfyRd42/o+xj//H9CjJe/96vHn5J15989VGn1mq0xPlz8eP//pi5D7z1rjNj
lF/z+792eILw/x7/jsA3fu2hN7zxtU65u+559Zeefudw73/1t97sIdYisnMk
jwd/Oo7jkhiocqVxNjvXYYedht0lSO0yryAbIxvw35WxuPpcZSzGqeFvEQsU
x5c1Pq9gTJCV9NOCPk5qXl+chRcbOrORT8XNQUaoBrmguctjgMx+Qn4AIYqk
ifMuCcVYv2iWYEkYeUdQS6NF7uzMMNi8CuEg21gzdd4LK1iF7HOl0C59V5QP
qk0eHQtoPSafjK9BntKwnSn2zotmGtP8CrFznDfSGKDgjs3tDh2vIsbRMQu1
LnMlZa8TbZDCdLFlnLZeG4xzFo8Yi5hl3pxYLjM/I8MpBx2EM7I/TiGtyE7F
OVK9MJt1A2lirUVIMfRUaCwVBOnV2d/x9g2Sd4WPZLWyEgelE1sZ5coQhEwn
hNP1SF6IG3FAezyhMaFqsh9okECTAPH16Qw5kuLFLCVMdmdQA2+oWJF2NBEX
ozAypUmy3BZrzhMUApFWZN8uK56vZ1HyyJdV5ebYUtIsHJSVi0Mk4YVJFshT
abJk0xljyFd6em6gSMwBKo6uuiPswJx0ZsXSx004GGUmuazBC0NVTiJ27pcM
Hi5gl1nWWAyLBOe35B0HDphzp0ShlBEEhJiq0o3srLplQbbypKuSMw6u19lC
qMkkYntKh11iWkofrzWouawMO1VjURiFi7HdMaqxpohG7QAI0bjWfFOGIjep
HMgtYiqInarYrvLIYdl5BUltSe4DZYkKQgpPdkNyhUqKRNhY4ofeOLQTzEBl
vlQuUTN2LRNj51Mou7jiIN+p9w7aHtuqjCqNLN0C8kuccibvglWKdgxf+sga
DG2eKYIXsVp5xU+Z6LEwzHfeHxagjcbvlD9ed7wNoEnFJO5JqDgyjGE6vwCq
vov1a4O5cuOxGikkAaUcFKE4q/xK4eZwWFsFCnkXrVdWPC85lnLNLGcdcAqV
/FcWVfhQi8vuM2k3fCXlLBmWg4USttmtCAeszgKwbKqKrf3UcXLTUncy0n5w
juhPb3KswdgQepthS9MUe4zjbjRplNMd32X9ie2F0gKTd84/8L579yP4/wj4
yAfvGybyM8evqe/4q+9nKKO7sKOOmrLh3m/MFJ73m8eHBatxHyPu/9t5SPdq
6wvMkWl8y5985eH9gPn4oe+/2zcQ9i8u3f/fe70f9t7Dd/sd8DEZ+X9AfPHT
D+yHOh737A8G5xM/dz92QY+Ah/3//Uf+vOCHHrvr539iHPbwBwUOTyjuURzG
hgfRHxPQnJJCPMblyafGpwDPP//88avsLFM7bOw78YbxkRGHt7T/763+4Rj3
/y1Nht/2c98b3jgI9fgbgY5vz2zT+Mef+LC3cIPNvg88hPjm/W8cvpM/2HDz
DYe3+5HdHt/3HhcyRptx/9/wGU1FmrhemZ5vLkaTPvzhM8uX/ezD9/b3WIXd
ORPnHYQr9IeWa6PSWiZ6CJ599l8d0Bilb/fTH/2oP/jwFY0HF7WSNgcsEbCH
7/nlCkDicxjHt/ptqN1DDz/qAZVUwj7kjuVrCMFxkNHx0XL//v8G1ZkXMuPD
l32Inxgf8Zi8H2b05z5OXdoPkV2LERmTYvyuSCzN0Os+8vDrvvXFd48PFp/5
vrtv3uE5sjp8/398mvm3P/JGQwyFfjD+Dz5/2L3/V7/zCBxxCbKMeNz2/9/6
wF2j2a7A24t//hvj30z5v37vPa953atWMP4wVHf77f/yy4/sP/13f/j9d993
x4rkGowFUE7yi5HYWFFe2O4H+Hn1cVZgl+iJU5c9YlraphByylMjxOL6c8VY
IGGnY3EG7wTnlwM+fzEwcXu8qWCNJaXyQSAj1na64FvzQ80/VqawHMtDttkr
lw9I6z5Zy6ywDGSnLshU0VUeEK0U96j29QO+JQLoomRxceHyGgT3R3x4A5Mp
JO2f5T4bRuUPCz0tVdYwICJbI5VRywdcbXlY7DWZ2cycHbxGCfACtCPEvE/e
CR+YoraUwPpaCp8821oZArzPgxkjIXE9E0wU243xVsGlwBZowVQs/ehiv2wF
9lo6e21F/8lLA2vqfF2zwXlqPi8UYSiDBg5Uh20bLqk7BfZCxrfVgfck3mWd
0cgecW02zH3fc9iAim4D0/7MQw+bXTGIV6oAlIyAC/lIOsNLS56UwHENsYh7
86yLWa0RFs0NvfU0tAaPpJtvIfScRUZaBgEZ6iQRIUXUcKD59LuwQEa99kJA
Tb6kgwcFHHPeUihdn81OqAEDTkpiKeAo+T6AD3VBfnlBhPEI4pajGVtoV7YV
28Mi70kHAJn8O/CQqI5xiJYe8TOhsTMq6SFrEbEaerJNtnlR9vTxwG0zbRxb
qgtWnX00SxOIADYZwGeItgXUMsJqn6NHSk7th98OKXP8DSiJkYzgRXblIAMB
KhmmP+CAUQIdmq8mvNoi0JYvWOXBeI4CF1OMY2T2vRdPGar4pr3UaLkLvjdy
xmlFGWqhsSQlG7zJ9C4CImmfchLZWpUKOtkJrkrpSVS03hUaSPqAIk69BNpX
LXPeOFHKgDPaKXFr51oqtW8F21h7XfHIL+EYenXPL6+PLGKWLxdkpJ/x3tUZ
a0JkFU1oBiqijUcn5gLOgSbdQ6qaIlnNpVRC0J1ddjEaS2eCmRG7O+Ke6Yms
BZjeRD8LtEsZHKR70UWIVFKHY+IsxngUSMQIMcpK4E+dtmg4StIOZLN2gkjr
hd6DIsZr8nKPR2rDlVSXEmcUGjQb1DD7sGh+XNk86SwdkCkQHLCRWh2qGt6v
SuOHusP1lDhJlZEy3fso6lW4sFLJQL1GjFztuccAnk5XcCkqpF9PhQYl2D7i
FsIAR7mXVsf62x29vUAKcCsOhXEVAqm8jKJOcS3zvLAul+oRiriF1d0hWZMi
C2zdu5V1Gh/54H28yfzg217jb9/5ttcMg/uu9WGjfrP79m++i9+6Se+ke4/f
fn8NGXzBr/d3ffHTD2AL/R88wE6l/X94ekaOk1JN3kIttHNyDDfvrv/JVx4e
/kZA+LX/xwciAfnDIF/93Dv4sqnjq7/yDk7As/D9/6NVv/pL3+vPVnzYvW2r
w/OUuP/PXrvvQoaNQORpO/xd2uF74Cj62x2+HE6jgWzGQOwhy8gX+P7/8d7h
C/+f/NQvD2+HX4Dvw/pmu5Xj0Qb6/v84sv+139Vx83z/6X5k98v3oq3MjWy3
7//TEonaToeCc3z8LwlPfNgH8RnHrXUzFZkIWEBsL7taTJ3thy30IQQDIMMx
7IofzmxpKA4o+l6k+TDFcO9gZOYAuXMRLhuG+rPj3w5A97uJBjAZ3E5fnvAZ
6wk5K3eExs5x3hPjjLjnDwWyshW+0Av8ok5Zqu+2r7n9kz//Zk+Z/evtq26s
XEiPlr/tbeP+/9/5mTfZXoTXptG2//k3xt//r6BdWOgPUXj8x+z7/w/c6esL
v+YrvzKm+S/81BtXmwv14vD2p//mG4YLfvAv3+sVlkTSV8RY+KMdisSjEnDN
cdADGz7wxdtO5xK6I1JXWRAhFkTaq85VxoJXTFOxWKnXLx98/sJggp7NU5vt
sRekJDtCxhHg5QY3Y5rjtECzNYh4zWPCKZVBCiX3eDQFu8wjB/Hx9Y5by9tl
0tXoFLQs0gHH4GL9zghIqSIjpZdjHHZxhOyCAkUM3KEabsM1tMuHZiM3ouYL
RZzQuEgGMFu8EwOrz/he7Xi1pfG9AhQpY0XKC6uYRkJzn0r5GXKHLN9eBJvP
AJpcwLrhc9FoXh+1xYK1F0Ik2bXYrUgoOPFjMx+r8E5jeqEIY7uAdS+yThgr
AS3jouZF1hG9vevQYKWuSSEVSpw5sDyjb3doRFYbyU0o7SZ5ZDhE5suAkC/f
BSUhpdCjXvMSXjzVVKWdT7PZ1oag1pkS8iyQCq75a+MtJf7KNzQ0yiGUHCmR
msCWCDXtpURqSS3g4GJjhGCkipMiteGTSHOeV6K8rUXpTF2QnbQwXXyL1OBC
THtlRCSHFJ1ApDSZLYU1GaxAbSbUkoZCJfUYUTLSysKLZqQf+pyQaIR/MOCM
NBAk5A7HEUtZcKYzrmy/+sxIfkYA0rJCE03Nww4VEIBWj1RnZ23zkN56yQBF
I/hbTpYLniJaS+Zxd0Rb0Ew5LtPulLQHgliu1FFwipAxUSnL+PlRCH3MEe5P
RO5ASC58zCjS7WB80XWQBGnmrgIURdmSZe/ZJiCDjMhLYxCAsl65iqaaqI5h
zwQ6Lc1Oqskuy5MxlX6OAnBAvaAmNifvjqGosoB4m/V5bGUDzvEMbz2daeKc
EeWyVXavCtQmGmPNUuwryoyQWiYOcq25EJpNpExs7SoOM5G4sQmjjZqm2cT7
ut4QioXCaj5/YZ1eFIoi7hu1GdLKYGZADDEZ6uLMF01sM7UiGRl4gX1yGdNp
dibXu6pfkKQHeZEM4g29wArq5UI7l7o7SVJkVuhhVKAIqLB+IWK4mNTpOXHm
7LIrpw7etP/ipx/wxwGH30hj1/Du+v6tvz7+giCZjv+awM//xPecMIZ/T84n
fu5+RqPczD/t0eQjAz56ecu769/8/IN+nrfocb7HIPfevP0qm//Dsb+YJ9X9
/91ZD/wdEEe+3P8P7jAs9npLP3HB8BX0hx5+lM+H75DzjcNruUwBXPHv/6FZ
nn322f2Ln/7Zw1fEf/qjH/WP8P1/NZj2gbfDyeHr5cO9x9/J8yxPUT6MKI3h
o+SPmrQNQ7Hx6dhm/MNE4aP73jD+z4Kbh/8QcTgzfK/+uA8/aecU7XX/f1tc
OZjXxxAPl+0hZUvOps3ej/PJT/2yP9Y5YfmJ42tf/0YIvcb9xL1bN8NPHv/C
S1TIR9599x/91sP+tf/923LA+77njuGaX37ye6fm+uOvHL6c/41//JBNDWL4
jL7//9a33pkJ8IVfHv9m+nt/ID1APDry2CPjryH6mf/oDSeiPF7fx9mjzacu
uOI49aGScivH1eeq466Wl7GY9Pflis8rERNKwFhZMgJl9xJBSNVEZik/nZ5R
7AmmXj5U6VeO6a1nwZWio/ZfBcPg7K3y6jDI2UQ5u5o7gO6aNkxCGpv8ifPh
lsnq2e9K3ubR6hGupgwVA6+LZJzxlFVXGnObMYxKkgJxpier1mJ7XR+vbnk8
rgD+WVSna6aqkt9DcGpG67sIihquKa4W45+CtOrxoj0vAfhXuPfsEsv99on6
deqYiqOePxGpPEs/kQjXmL2G5VQI+nq0E9zIxjOGtyA1V/Z6Wg8vrxGXIca5
3F992GKQdP11q/N2CsNrlGkk/lVmP3XN2bSivpC0PTljYd50ecVCrCbtLZWD
k/iUcJ2Wwe0JC1fEutTjXdKHXIKJIVO+LUZIWJ2dQv7UeXyUOHx2/aBEla5m
j3ZWSnVyBMH8clRP7rHEo/eifC2Xdeq+RGBbBChF/NLSX1t+pcSPyl+W3Qm6
bl2srmphbdLlaSKmnuygrnBco05d8+L6euH5FfqEs6j81Zi14NhR9CcF05Zo
a21J21u96FE4llyS+kDm7XEc795x3jftv/n5B30j/aufe4fNsv3A+17nG9E/
Sf9f4BMfu5/qwuFK/mL8YfO83y6Pxi/F/e0HfgQDHr4E+9hdGKTczO+Prg32
E1BL8/QzTxa3aJN5QMncjzYMpg7n3/GA/C+G8SkGljxb/y09VzmG25cWO9n/
t/D5/6fwpyHDjHH/3wI6Rpnj2w8McTbSleY79rp7gPP88R/IIwI48mrY7P3a
179xPC89/LjlTlAPe8UPPfzol3778B3+EfPjQZvtW5jdb4d94KfHfeDDFPuT
+3v3Mw6/qeaw80xx1A3t0dS9+7b/n7oIjrv83PL+/9Jd7set6eeee+7eww75
dqBfHAQ4ezgYnG2cbrMbfj/S42MIDhcM+/APPfxIvPEQDguohGM7OIv9/94X
F9tjxLcSRN7/hzHbLzzzzOFPMzz18dHsfusis/TRbMbByPe+7/1jGh5vMcsf
DWaTGuycP6DZIWfHKx/nuLuzrlEiU+ba8eTZ8U+oQz/77Xt/4N5/+83D39X9
0z947Gf+5uvPd+MgSwnEYfz17uL5f3ZIqN/93IMG8o4u2N1x9/inPX7tU2/T
8G15Rtr/f22+5u8/Of6nnofeeVcU+aNrb37z+IfCP/7RNyJ8dCWUXDJ9W/iV
6HGL42xwnnMkgTBEdpvCNHn+inPlWEAQNtmM7FSB83cUn1jK/yJhgkGWbBtP
HSZyUx0oAEJDQWeSLzwp9MF6CYZxKH895GXpnnJEpBcy3Qu6XaAdRrCCEhbs
PWnO6B3VYtzljtPFjLbonkEtKG0F1cgQwYGEnUemiPfkbJ8u69lUR2xAm72D
/TyXeEe3GyAl7DJmwNmbnCUuo/AZgNTmkdlgO2coZ3HkZ3RQz2jykiCENGSv
mWxjiUyclC4XtPdZqBOmNAcOHBGKfk7SKCBcNMcLlowtKD0Sb9lv+a5pk8Kk
Od8zwo4D02a7zHD1E1R0klS5vBTR3tJJXL/kWTg9OYM2IYI8QmI40N6uEMTE
yaKOhJQZw7qM95ogQMA1B3vTxlwsgp09ex0MS/OqwUsdZ+mgYV5Ec8nhsxdL
n5pzjdPNdb60oSRVAL8P4dsSXFxllAPhtap0CuVAqphlCa4gocHCMZrLdGPh
qUiQa/UOoRQXxpOjjnF0JHO34su0HhK8CR8ftodhmizhGlmOKZ6ctttI+LB8
CKEJYarREz2PGcosEpdh89KjECoCM1xqvXdcWyqsvtTKZKYSrB4tgfAwGifI
NmQW6cB2WTLZc9NNYuh6zkq6LEeWuiyQTQolhQ/oUducytYSKImFrHtayCQ1
Yps9GdmQNTsgL7IMR5Zyy1AWq8obaop4x1U7KJtCTfAu0Q8bGy1ASx8hwR71
M0kxG7B0A0iBC9psBnsU/J5qLqXt0j3tafxooY8WBIEbCSaMGSC28b3cEJLv
EbGtQCGIKT6AqOwNggxqOktZpNxnnshoXCY079i73u3ReV0tWYuyPVx8hXVb
ZSbltdfQ3PYI7CkWrkXSumjua6Z4FKTnlFKi9FBLlvKWqyE3FZwFvIPN0+0U
ipKZhd7Kp6Hz5Oa5pwu4jzKGLyGAXPJIQIaQYTXH2jIaHL7xjr19F5Ye3/nn
39vzgR+5RwK32X7kgzd19/u7aZdg5Ma9N2/nHe/D1917F43DxZ/5O2/SzXzr
EskX36Ucb+H9/yf/0tIR6F1StjrLdm98/J6/XcA+7s07focfNnz1c29nB6kD
GQP3iY+9wS/YX8zk0f3/sfTvB2HQ3vm2OwYj2cK9U6P+DHHvtZL2Ow7Ecmyt
Kbn63dPY/0f9GvbMD/vPPqZn/WZUVPyaektPn9r3//3MsGO/v/j4J3SfQRG0
zfbHhy+B92NjvOzxPXDewxm2ygebH3z4Ed923t81bGgL+Y+mDsbY/g9aLH9I
tApdU791TJbOK6PK8Ot6hm+n+zqFSr+VaQJ8RUYGXSpCcJzrk5/61PCLdEJD
SOUMD7kgsLZ5fsSB26rBJJeLwy32mIAfG21/+H0/OjzgEPXoYbkBtX3cHoUg
+sfDLXfF46Xc0kZb2e9T+tJvfxlKeLzlcf/+v0JqCUUDjqONtBz/A5pp2l99
7J5/94eHHPnWF9/9l978mpFdovlb1r3hrwP8n//To6aryKP9jO95ePxm/n/x
s28a4m7RJ+N7fP//LW95bb7mR987yuBff/9NylDzsd/+tR8Y//jI3/gPvov3
UZ1Fjv+o84ZDsbhmPff6eN1xNmkcI6393C6xB8jtYlXT+fzV5ipjEXNqIhZa
FgVnT1vceGs4T9psIbgWVq84TLy1lv7HRjvKxdLbJG7+SZ8hSl7HXbIwo5cG
W8sAk232hQaUwuRK4kPJ3gU9GU+tF1VzpBhsWEpfwU0X2lErnfDIWGGYe6ry
AmejsMSWjxpR2XqlcpNulNWxhdsBXKZ7wX8fn+rRSmrrLhc+8jeKuRcOjdrW
+hl/ngUHgYk/7RLyowSApT4sxVGfa++M1V5wx5D5IIjphg3Wt1QiwQ1GWJi8
ddD8KTZnxJLfbjxx0LyNadK7VVtm3UoI6ROJteCPT+ErAnecOnnYxj5udoh1
XKRsV2HkPuAjZPBAYyhOFjq5JIQtB5FBrrS0qBESxocpUYJ2xOotwoEswKYc
BXdkHSes72/Qzrw4TqmdVjSghFHINgGWcMeoC75JDWIlhODQ+Pw8RVeU8nYJ
7bWKZlmmQWRJp81Ac1BEyVYB5AvvCDln0EgsKfre5yNDe6QtyKlFKkoTcQwL
qI1BzcWOq0/PoJEjG3/LUZYlCZGNNEo47AK4MwliVfcsc1NZ0mXelczr2U1y
BxA0Yb0GoTI6mYfSqcLYw7uluLmjXBDcVvZ80NykqgF60BROfkmWHZMfxkiV
l01p3Q/0dNtJNZGaC21x8F0ZoJwMIyvDZsfgiCMbjpoXOLYwxI4ZtfNajzBZ
Xnt1C4rt3SwIyQnIyWLFAtfTC6gZJQ43EngOvlFe8TKcFyyUv6gUTn5ol6zW
lzzCxqziJmRjbZ71e0s3XsQWQkqJAyXhWJO2uBgyS6FsesaaYbTNrtLbJbvs
edQ7VmZeZBG9VZ1xPaFyz9kddBiiEZILVPHZeYViwLJVlAVaR7ykcrfcwyQT
zy2oiAaeETCd966GlirLDazSDsoxsSqjsOhKhNZiyE2itBRW1lspdqQwDIXf
zg90LOKUgDQmNHYJg00HksjIJieoq1YhYVHNjRiqG1r3ud+jlUvIbm9HYxWA
3lK9W1GnJM6aHmLvyAWnoKUvCjSaxvYk2l6SdhSL8d4ltux8JSIwQjRoXu46
tEnTJwgQBF9V+WJ5a1qH/F2GaPJmDsWXewnBmY4QkdB/+vGZJ7Hf7v8X4Acf
u5Mx5I1rP8ph/5h+sc9+tMMOObHxnpu38/45PSOAs2zP/nWwNqj0AF2+xT9d
eSvlgT4e4fv/Liar4xMK/kVG44CmnGz83h2F9GD/Ox+4I1zj2ccwum330HR7
cKxqiIVHG0JDu/MZb77+jTffcD8FYie+H48v/faXx71uoD3uPz993IOVlKGf
w776Dx+//k3FGh/xLCv7Hv7xlh/lwNH+v8zF+8AeoPe+7/3DIMP/O1iSU7Sh
jSwIxjA3lkIG5MiKTeqhQkOkbr7+/uFb68enDzFlSOHHuD/08CP3vv7+ZYG8
S+52+DU4Dx6etowXDLMMWK3InbB8WCpivP/v6c8ouWKvCK6VWD7CtSfAMq4U
tvxiuOzJpz5Ovh+Autcs30dq6cKIWXbBweMzJtEK/L8PRcwbJ5Y4CiUahv3b
5mL3vxz38/c/77731e4IJJRSfrDqv/7Px2eFf+0H7iX+jNM9/YtvHT599F13
c2qHiH/Qv///ltfma7avvvjTPzj8f4T/7r986zINsj/+nv0HgXe+484lqbRy
VYy/1K+Kny/aOCwsSsux3k2dv/pcORYk9bHX0uybstZfo6y/FDjzEvIqWL3y
MBHZ9NXuVueiNgMde0HIZU/rPp03oMqjmRTs+EabRbZo4oybncRCm0ayh7rc
AAXHgl5oH+IQjcB6d6p7y9BJ3wcIoaxgiUjGDj9MnUaI46fbCa7C09Bj00af
wAhMuLN1wgTMCRAPayCweCHdeLzA+iJey2BxxHet1F9JH4VlCUBkFUy8YmYW
ZntWLtVOUE6ZUHFv57XVoyMTbUgZaujI8s3Ep5tg7W5ZMSRkAVOXDOO8pi2g
RMK4YbXJg3v6GBSZbMQKTcOcINkwt38XAKGlE7eFW9485InymaWFJuQXOSKq
u5IQeLh3/tMZHhzR4lUTkuctU6CYWj4qUEVwo2xK0MWqMAt2eIIy7Jb5YssU
j0IV1kkfmTPWYRbjI002oqUxo9XgJZUP2YfhCyiLV0kJs80rtZCzRjJls9Uc
ASAoK7Q6WPXBd5a1mPXL6LhsjywdRmr/ohnqslJrl+baiaiKDb6N5ltzcG1F
/gptVC1jH9Vvw3REmHg+k8FjUZIcW5EWygk+K9TyMAK5zxcHSnAmqqchH8F8
vT1HoZCF1fR53FI0tDXb2dNyaicPZxCT07zWxnWiA5RWc1ztRnqXaShgWkUI
BAhTpyxgEHKpLUxNORuZw5aEtjO7o2YQXFTUVnr7MhlGxKsvC0pVcCOgSlQk
BqqyhdHiDp4uo/ISxvt8USfPlN1K9J932tXgJMIrnj1HMPEf9Ijb8gUNeIRc
y/iuo2268FFJjOkwIUH5tY+WryH3dZ9/gnKZBinR0LcHKuas5NyRHOSHX8mq
wk7ZNg8cpqWN7s9n+5fqdWF2IhU/cah8EY5JinXHg98Ol3X283Bmk/J3A2No
hBUNEr60T7vTGM3/TK0f3/7Nd9kgGxp/E363z7C7/pkn37Q/9oPwvvq48W6G
OQi8mf/HX3l4f015/OBjd666cd6w/0/4bByTlUC3yb//h4ENz0Te+cAdw6cf
+cDNAoHx2PgI/NcNhgccwyH7/x3g9f9xMPyHgmzhcf9/o5QeI7sH4dnjv2En
1i7YsG0PPvzwsJvN6bC/Zn/+z/7sz/bnj9v7h/B5IIafjz/xBL4o7uSxF+NX
7tX94fvewzfGebqnP/tZfwDBTPbfAxOoO/zBgiefeopJvvTv/xPtV2wMjRzy
FMbYNYNJj/MzETqGhyNf+/o3BLRuyxcPP4dd7n0Ibh4eAVBuOlzd9oePTzQG
JB3D/TU/dfxDCYffNbS/t0sGdyOk+8HvHQanuAzf/xfu7eOuKmGXSRbsyTPY
M4ReP7LE78ZnRvK0hQYfLIdhXUix7b2vf8Pwa4K+8Mwzy5G9G2fmVNyXNvuK
bR4HH/jpS4nNf/rE64cEefhddy/tghBuiUW/feRd458A/vY/ebi7/YI9+r4H
7zLZeWS98+I7aMhmSNiBbx/89+T7//ma3/j7458AePf33aUB2u5vGX4H0T/9
Rw/qFONlVhQ2Yvxlfi37LSv2qttccZyi+gySflShqSSSeHWXnL/c5i6yK+aC
6LnEQitjrIA81EuH8y1g9QrCZMzcjtmyyfZoq7NxR4xU0RJMlHUPjm98djI4
YVtZMoVbbrrYnbLNE6/FO3OwC7fXZAjlYwlUHaiN3N55UDZswIpxkECTSSqk
PKD4Zd3XsU5tEjKxb+R4rcI1ep6rhg5bEVLQCIHbrBQ3DkfmgPIwkmrVbeKk
PFQnvF3R1BJTIucE8TbEYTay6kjZ2m6zLC0nF5aUEcI3UQx1U09yJzOSpIsm
CZgpQ70c5yCSL5J6ObMKkcGwm9UVzMhIAvmOUeLEKYYVznRkf8wyQjU1PNGS
MRwbyi/go7q38cRcqfQxYcjsXHQ2SrY6xVYkEaFXXFWStSIfV4nzKyp/Y2tX
1axUj2IcZZYAZldAKlBHbd9wKFedOrV/C0UVwmRuCGLdNrC9VOAVmR3OD+o6
QGQBQuzYWRmZzQgMjB1y0I0N1Y6teM19glmCCohVngLlHA6Yq2JTXdusUvpU
NXEjd4nLW6ITNRIxBcLUdE2YVGmWyxx9upEk6ihn1ZdwSyjT8egyAptQj5yx
EVI/L4NscioxYhQsWiFGmdKWw6ZIVTumQJh0LN+xvE7VfSq7QVhUV0PfSP12
nCXpXu42t2iQoPnJ4G5LeRoH59IpvKWFAE1aVbHK8gB+MGyl4DD5o+ZUaUJZ
qcggnSUNda5RNGrjO3y6YnbxyF1c0cs40ueDdXSklvUknhwaM2ljyhY1LRSm
0FNp1kyEslh6DBXfy3ekBAyb6GfysZpyllqIlZyRBZrKuEah04yDzeSm7gpG
IQpFIU3K3GDLoc/TzVUW6jCmv5bolOvB0LClNmOVlFBIrrlv85qAd8GMTbCW
TI0d/gr26LKauymbxdC2vsvEClHryEHrOuTAUAeivuOBV+cde5WIzU+mZwRf
/PRbl+xpBwvDL7SZOr79m++65+YNSIdpBe+9nzg+8COvM1g29f6/92ysQmZt
/P5/z9ds77n3Bj+q+OKnHxhQ5V8NNE6EAKGQ8eOS8Sv9x6PY/z/+3BszPNRg
cob9fzP+aGS34eAO+7TPP//805/93HEz1ruXw2WPP/GE7aV/HIAYK4ZfSrO/
4LAPLOuOwwbv8OXtYYdconwcR7bc7ee9r3/Dfsz9pKpCm3Gz/UMfphI5mDfs
A3+WObn/uZ99f3I/GpY5R6rQhranWDBmg1YEaRXa5gOGT4/f/38iSL2TYcDt
cIENVZaGpf33ij1cTz71lCby0ccPfXhAcu8UqcpIAL/3gLNk8ebm6+8fPh22
2T3NH//QE/4cxJEcK50BMoxDl21sBToSbHhSs5/38L8A6PzqOO/wvxX2nx5C
AD2hjSl7QLBHaQ8RJj1cc3i+MGz+73+O6Fm2sguH3/tEjCKcnaihLpB4dpvf
+dwhof7llx95z8N3D8djh593+dvhuP9Nd7jN+xf/+JNjFv/Gp9/+Pa+/Y39+
vd39lcde9+1/Mj62+w/ffxOSi8NXSZsPxt//swnXfPf3vOp//93D3xH+0z94
7CN/43ted9/hPwHdcderHv+x+/7110dheeyRu7VCDaWElufcJPcBh61gwm2/
C0vH42SGX34vNX4uVhsIndEJPU95/io2s7yA0nkZFXFWVadlrIlAGOGlw/l6
WL2iMAmyr/OS+4ZG7orJNroxvIBQc5FyhH0Txvjc0Uc+Y7eNIHQbxdClhpdF
QHXlA/ZeQbyOqBxBoDhSm2TD+OnKPl2xYUXItuGjwSSsJhgNPgDXNoaJEFgB
AeUShUwtlO5urCM8Y3CfuTGOplSEIhH+KHzYbVt5W+6BkE34DWLkoYGPW52U
FwVEAAkrEU9aLGUaDyhRkOwuVLdjBxnqZANfjNB478czMgHgoKw9u02ai8pr
ZovMmyjHGdexp+PFK6/yYWSRRwWcs0ASSmLtlq/Cp7CQx3F8GEBWM08uAJI3
ExSWrY6gXO0Iok6D0il6zFWmaB+g07wYVJqup/BxFoQNHxZMBjOJOZm6IhWi
BFQ96T2JoFeSj10AzQQk0iDs8rFoM/04mzhz9QgqJ2wnxztW1IJj4IzOwiEA
8ztm2hSXQpkj6ZDQSHRW8RaJeLUeUbrSFCt2ivU8DbWCUxVnnBsgc0hMj2mK
lLQZA7t4lw+W0OMVIoa4GU7GQrAqBcf3A+2jlYPTGyv4I79L5NSdTUUQWcwh
yFixCIgEgWY8bLcV/gN8soqTBVmv6EXBjxGh9oBTmLKeXyMpWK9igWBrdedz
Q5arbjBQsehsBJOYUEHtMVdkFKWqBIiHFaxUfjtzPOU40qdTHMRIUIv6DUio
NCcG4CrcyHvIHYgtgi8NA2cKAMf+ZKdSxlWM09mHZXZRFeCQafWZEnkSnCBi
IWuiAmAKfe4cOkajdxxEPF2JRzzpVs8HPJ0wW+qNeZ24ibdw1+HXe2pwk1BB
serIVKYKCc5KQkzzosxpXWPvMmM7jQJUC7onUsCUFs2xlWYoB2WPIUkHB4mf
SHMWB9qM2kZWTKmTNGYE0Vgv0oy93g6GUIqNxmwDUNyHr7qteE0iSTpG5knt
CBpCWRmvFyFd+O3HqcPX8g+7zSwa3eaee2+E7fdPfOwNSb5w/OQHboYxw/HV
z739nps3FlzXus3iONp19v/HUMb9fwg4x/0wlzue9v9J6I4/w1OM/fWLbsNO
/eB77lSc94Mfge3i45LhMcf+Av39Pxv2nWm/SBbunVoAXlaPAbftk089Neww
D3859+nPfvZ4fG7Ygx032I9TLJKwD7u4w0bxcOMXnnnGbzxuaDN5UB+x5S4Z
dDSJrD26s8Vmuyjq5vEP2f6/nh+tlbw+vLUNbZXxbjMYs/954jh8EZ2MHE36
0BOEKtm/t83/+4MSNVbA4+tPfupTOQQJSZllCMHCHo4Mc+1vGe7dDzIMuLfc
/nfAxkB7gnCgjoXl6zgF/ptApSG/8NTHhyl03q8Pxuwtf/DdD4tQS8E6zDJg
OFzsI7jLe2odn+CkImIu7Oc9Ea8nn/r4IiA2Jtoh1862u//nG49dRSs+8/G3
OH/2/L/zdbf/r/QnSP71198z/AWB4Xj6776F+oekwMeDvv//GmWFl4DNW9/6
2v/7a5ALfv1vfv+xv/6j9/mYKbU3OacWdn7BDOy37FcC6oXdW8we1X7h9p86
f7V5eYQT+CecF6HGqRDxi5cQ52tj9UrChOQlKADOLPIsXTXUWOipEZV7MbIp
v3drAY0BUi/0R+jCjI58HeituOzX8KTHcumzLOCUoecA9ltFcruU8UsYN3JB
LzIbcmrhlodOry9HGx0Bzt02mcG8EmsXiNSWQHYkiWzBvNBId5mlXGGHZsyq
vEcflmxrxGTBReGTTp7XbjET2eAFxkxhIoYvaGGlH2VryXd4jdq9GH3PoVR8
Yh4hiEeVIMyjd9swY27PlKUJsRhfitGYIEf54gVRv+UbF0zUnvjQbaNHMQvI
Zr4rCtF2IR5tF3KlJmxvbT+GpdALr5ghyh+SSkhTxDnn19bJRndpmhxPLnq2
YSt5Hc/ojHl1H42poh+yvki0QAnyVFVXzKjkF/Htk/HB1FT1FobMIGUelIWt
7Eh5WIGJSPIiQkRVppLKXu1nC8epTWMVHCLnVjST4yWxSEEP17Bt0KJJ4mGB
7yUVBMuUkM0E1X+RQRoq6bOU6a2l5GYZtK6PDFnwLEqGhRCb4xIUYzua3dOM
nacVE0kDRECNksVO0WvRiqyovQC7EGeB2ELbLXJcOWYzqkDpmM75kD70FnHs
06esz5FjpaZ5vmxhuYyzIdzUYNCmrnTKKJ2x3wSdj3kU79LZoXIWbqkX3NsE
JdQzRSaaAoiFlTBKd7SVQGfLzeAFCCn4a+IwsAPxtn4eRccZFYVaR7YALbpL
tGXKnolCw3FhLcLPRT0UJWbnEq1NeD9uBUxCypkbKZRLW5WPfXhdaaYwbcsG
10tjnR3dbzcsNxA4klCmpZeAbXKKLuiDy1rggtD1cheblO51iWNtrIjRE56k
WvXitAsGs7QqSyMOqZhy1vfpU7ati6ZKa9epPXhBUwc6SSnZLERh5HbtVcYz
WBeomwExqmVKYwsHH3ySnSKaHb6vLr9a5z2v5QI6XPPFT79Vr7kzxl3ovbnn
3ts/8+Sb+E/9/n/H36Xz1c+9/bB17474YVb9/E9899Tv/AlG+gh8y9/+ie8W
uHpMxHbub/db9u6XLuxN9Wv2vvAth2/1Tzg+vM6mBpx5NcGxWFQWHn6JkNMj
+TIcxy/eY+t1+Pf8889/6be/bFvc0Vr/+VM/+9Hyxh9+3/sXaX/PDf78M8/8
i299K3Tdi4C24f/kU0/tLz4MqOmwP7M//wtPPbXsC78W6YVv44cpvnA05vTx
eboxmyTwmr+Dj4fv7acQB0/3Lx5898P7EAz/ayAguf9okfziM/sL9pcNu/H+
bx+UvZHEkJHYA2h727xLLCkxwDV4nVg66tWeNnvogs37eX/hOG85po0DY7Ll
X/v614+s2+YIDjYPLpw+nlQbeNL96ze/+TVX2fzH/j8d/e27X/zYm3hPfn/8
0W+9+8d++N4c6CXNO5yR3/+TzFsYhR58x52/9fQ7eYr/458+8sXPvP17v/cO
TxY1TIX6JGFORKfMnVu4dzF9F7flXObC+avPu1CET+MfcF6k27MovdQ4Xx2r
VyQmYWkWsYotTdArcz8vIk4Nu0hwnUSY1gJJbaZuLyU9XzBlhliY+ny5Pi4G
T9k2cWY7Ebh0DTMhDFWQMK6GFhPo1Yc2BkttUWScPo7JVgn45XJ7miQVaJO8
OnFmKjevcqNaEtv18vxVOHD6ltKwCXGYOmTHYBGjGZnD9bf0OjubvJMlW3Ik
LpdOyiMblo4+Grmg8yU4Jdun0iHIqQzYR0uWlgIJNAFhwrBTOFSbJwJ1cWMv
qbokoT6d7LUipU8jMtXaYYLzspR2QqYQhFV/bbyzugxu6enxFqkjmKLcf0vA
5pBdqvCnrUq1I20FVNJdCv7puU5zchKuywQzUKs0ICTpwr3u5fYpbZ+qBbQL
WmwITIXpBFyTUPTFLXX0e7XTHIxQ9NE2v6xUDyNGXMAmG6qELa9U2pwmAB3B
5uqavrAk06Caom4yyzDlrA+YBMIsYlHwfcLLcOj1WXx1TfYrgONCNxWOaG3J
+aB1vUyN7iu1YYE20+kQiZojGE26AlvYa1zjJEn4l9EvJahEJg2C/dKp2E2y
LlfeqkZMZOtVT0aedNCQKaeiyCB2If23i1O3xBEmpyturCX6hKdZik/w0HGo
B5x+aBWk4AQlSstDUHDNBMEWbG1yP/DnBCsWXX943R7Pt3ay9Sv78d422NnT
sD0usyv9ehuqtxl7H3+BoY63t2LbeD3mHW8kNw93feBHXrc/3vHWVw8mHa5v
+/2xMJOGW9w1fuFWHa5pad7xtfs+ONsrAqPj44yKgCAj2JoXrYNzNLWl2+1i
+xRIgmPtxscBPi2B1vbm12BhsA1RMNd6jBk4QKHfH49/6In9cfzyNg8C+xfm
8kLhwo3ELhukl9CHoDPHWgsZZud7nWZudk+0B0RkYT8yYbShtzPuvo3fOhNG
kyhhcZ4oNEzXe5Yt9UpJE+cJhWA58kSTq+UQKFGBQAj6eHJ/y3Av2+8XjFSU
vGbpEB/xaeu3FzcOF9/7+teP8xqYmuyWJu2GY8EiMFg+PE+Bs+0IEYuVwR6V
xHSm9zHH692k0YaeE21MsdZv2SwMTCchpy3L2utu3v6XH737oXfeeeM1F5VU
uo9QYJbW8jyL5/7nnffcvh//B77/dfd91+0cUMJkNJiFlGVk0V7VL8/WF3iv
izN4TkeFeT9x/hqxoOmuhH/AWWn/ncP5+li9wjBZqBd0I2zmOpgUiZWHqrm7
BgWGenO+ky/AbemyRrAvOvFl4VC3jIwXEQGKPmI5MqFWDCmUInEMOCEP1UXP
Y03FEqP5pwKCUKuNJ4VywKoPdykTkqc8VItcjm1S4jlbhfGpN1sIJhupGpxx
Gr6FhV56S/GiOBYqfV5S+UZlJnunSWG0XHTUp0mr4yb1I2ipoVriSmHUkgAH
l9poQPZ0kV4bRP0iuWAa1cfZJ2YhAnC69cwfVwzNR+lyySnOU7JKlASMEg5w
AnJz2zKpenJEOk9mI3QSWEXaMNWZxsvYIvKLwmUyrOc2eJHsTH5B7kL/qS9i
8uKCtg/ZqkxgRTLKqXkwjIPb9mGN40PJ4Fz7jMwLvj4sCgA7u9xbXVA3234h
7jDCSSpL4WVh5BUZks4zBSsLKdyhLBJdR1pq4WaSLCQuWH2Pjmv/EHxxS1Q0
+gXksU9X9kItxk0X0Upsv9fi7qEUiqJ7YSYESDU3lRsITRTDoPAqBR5ZJ39P
i3dZJtiK7FSJjwnYcckgG1qwkfEEYmkjYqEO2lsGKlRGQB2WacTkcQ1Oq+lE
1+SRx1RPSo8RzODLuFuzRbesL+ItJOkQT58r9aXBbC+4Zcl2m0OWQdYIh6Wl
edArTS6Xps2iVabpqpzFTe2JPT9yk1KMpFiKaUXOkLB91CtCjBsPzmIBQd4K
8Vy1IFwokaoYnbCOFuMUo5w7EVJ6KyIAklPGCXpBoqUbiVU76ZiEb+Qwum5i
GmOeJAI0WLT9kgQQ+WU6gKC0cjulCbUHunhZuqTImkhS2870XDpDz7YYl0Wa
quNqS3RbYq0rtciisBh0SpsxFXni2lbWjMhZJEjOCyDg54mxi2K0wHnEsUg0
VeO0SzZKrq/BOZHzOoh0T7NDg6ttOe1kklZ4p2dNSO+rXWsYGPleV/HUUbQb
J8OCkteYM9zoywcS6jFN3OzeUoMaD1+gtagOyPeWVoJSRnufaNEiT7nxGK+h
lSC8aN131pYesTNnl2QJctBUzi3kdbf/9NbU9WT0LiwSkbAsApYsvG8AX7xw
u7+WszSgP9FYtBroTgxb+BkegVp3gOzcwBmD2kho7tuZ1hniWWZTd70Pa2b0
7iBXQE4NeusGu9c9zw5CgpPOIjIeKMleEIxUbgMBr61EGJmU9Nku8LAiiAse
k9oGC7SzXWHHrlQP1hGMphiRKpbpXAp7Rw8a1W44TCYRkkokULGFgAKQJT6v
+eV88IR1lHCj1ylDMuoPL51cdhZIGV7pIK2osKrmSExJeEUrqIq5sLvx+tps
7jEv6dXE+bGUYIfQ/eJunJscWwxaOHj50F/TL2pObvneljgJPYQIB8xfuli8
AnC+JlavPEy0QKNwd26S6LBKHDbPUXAdKGpl09YTmoGlwIgChI4IWHkQqXno
XC5otY6yuyFtNKDwgoZlfabWRfZMUHeMBp1VAdhPo0lv5oXD08oaNjNj7DRa
54P3MCCMbj6gLntpg+Wtj29cRWthU4DVCjXKELpZlXGin5cPqbyAekn4OHW9
yeQY8UpnSTeONPZ4dbbSYdfYVG5uMTsaDOpmsfJd+C3cg3USSspW71XGrsCu
R+O0bIGPc9WYg2InnZK3SaQVvn20JGyRKS4a6MldWJCndMvGPWWeuOws6QWp
AdJwSZgsffyOou8zolG3cfzbQaKitj5yAXHds54hiK0DTkpIgFOecoJ7gnBe
i4V+AVIJerWUWyibSABJ9mXtxhItnZVIh39q4ePFlBLSMoi7KWnP0mLTlNBd
8DQRw1DLSM+RicJGPww9b5IhDragk4UM50gXFc+Fl1dJkps+VCvoLQlzVwaR
tTEQLqq90S/EGhD5BbxiYlMJai6j3EswYeQZGRUIjw6pCm9leDVhX0yTschC
zWWX+6WEFfH1zFq2An7KNfRCXG09d3gVRmzn4uIl1cnjrYLLKVV/3A4+SBvQ
EXO8JEGlqaLBF88ILmG2p8fjuNna7Xi+L1vhM6uuFzVsHXBakfBauLkieEsg
bQZMpS7O3Nl4pCgjLIMgniADqbpo+xLE49aFCqjquVRYVGejHJ9kOaW0XXJG
i9RTkQpV2JWcFBiSwiWD2gZQ0XHoGIQezYkUrOACbUSg5PGkyAWw3aPcYUx6
vul6Qv1SUFfadtCK4FNskPIkO4tOuI1mGK0OZa60AZbybSCDspcyBQWCshUD
Stbb1KbGlEE9+eU1yBpR7jc8ASkW3v5JgcNOoBdlfuFFs3e2sD3S8aoLLr8l
Y3XbR6qblgnnA5hJnOl5QKE9G9bxT1wDqSeZdWp5uUGlawkNES7Qw2poCFNP
LpNSkV+6khWZYvWmcoAZtY3fWCsCCYUicY2GC57FKDHEN+kraDmABgmFnqqP
JDKYQ4XSF6eOpGidyiOb6tfIoQmSrkQbA7Vktvdx8A43LuOkxWVyXgLk42xg
SRe9WJbj+PhdwGezzN51Ygy2H3nMjkfow6cBItTHMEi0qicK9ZS5GpoOr5f5
I04oPtAGkGKIRxWAkJQc2cwfT3Bv5zxfNhOzUILIOCT4EWcXN6I3WasrRycM
mS24+cihJEWqUCdWUVTyblMEWt5CM4UGLUeQ2ulAcpiBRKYlrfNHLlBL9Hw3
dRlRy9Itpn9XedpVZudPM+Xii0zUyBaq/nRSJgojdAuBSAxbBjvDizZd0AVU
42vR5Mjz/pLzrT95wURSfYQPZeCQktfw69buRddEGddFMcxkkOx7sWNxJfy/
8zi/MKxeWZiMrZpdvGxLBzeGCb31zK2aDZvXVetES8OmsoPeaBksvHxD4RtP
km3T4ws49FCAIg7F1rDSfkWpn6Z+HQ9oCNvJZXmLNDyRD+NoHUeNzEB0NjlJ
bVLveCMtaUWpETTksVvOK2hhstjptNTGbIOT0sBsJiiUo+bXKw/r4jJd2gIH
WolXMWM9Jq+mJ49xlc1wORmKoG9kOmkSppRHFw7BpI7oFHWAlmC8IJWLFeGc
v4LYJnK7k5/LcBLdBXu3qXJqQm8NnyWPb6+Fezw7L9NCfpWvpwggecd2bgT/
Ljkl159iETYAaU9Ag56wgibIgycBEy9SQ1iokHIyBkWZ3LHgJ84TRZNJAcNw
l65BgnoUfMhE9bmqcVgTtCZKpMroe6SCa1hLCuahyC5LX1gxuo1cmRNhiLW3
N12ByQJLJyKSDihsiesvjj4tCoZDegYf2Taa1GslG1dYbJUvKHmL5XM0bLOI
uk37mYFIuftqeYNIouZX4qEAp1Uq9MafxGpd7y8LX2QRHRU7U450PlXzMBdt
T/HUKbhpBAoQUyXW4jIcTJiNUYLaNrRJZU6BgUUd92o42dBWdV82diLgQdYC
8/OWYIE5CU663ceU53rZ5aXesojua1mRKKDMKUUxrMJlD2fVBXTaaDxgBqPk
hrECLIrHcJUUC5HCp6otkhQCRW5FJtYsFdQdDSi0LODVFUdub6ypjloapuY6
7pvYym10JpE85OBG7NfpCHx4hA3zeD0/nWEBJJDt3rhXQxFcVvZIyAImvsji
oSS4qQZ1m2WItaPHkkiT+jOppRSySjEKwvTLuEajkSNRN+o7tQpelznQDlom
mx7z6uTp4xZueSnHqbG9xePFQ2l6kCmDX1RHXgIQki+bdOYaI/CNNbzdxOAv
Y1he+DGJxvXHSScvJRiK3fVsiMjc0iDXMfWyVLouMi861Jfdck2dmRefbq4/
9eaFRORW7v2OpMwtxOI0/n8+OL9kWL3MMXnh+VhZeAWcXyzATy8HXpbHaaxy
cb+y1zrIqWvGRvclqexXjuz85NsXju21Brxqnr6osExl/a1Pfb20mqbZNdNz
Xo6ZBnlZdJK3asZ8+sUVBefyefMy+RbG1BX6ny/mefYT9ry0pnaXzPICWXHN
y64Y4he0XL0uP6/u1C0tcG4F5Hj9i9I2nMyysoK8WIupiXHq3Wx6fW1sr0vy
W8X5pGGnB+kuu/3qLlzJ2he+Lr4ini9u8ykPFq9jfNhOf3EcfDEy4kUH/Aoh
uPV+5qoXvFBlm7L85QJpdZxE9Tu/uLhkxu6q41z/uLI+N93hddMPP8f9Rn/b
HF8f3nbs0fFnN2+60cHmMsd9hHE0v6CDDeOV+zMdz8ijsT10Y2eHmdd0fDtZ
6Fd2boD/ZNeiU80ATjfakEyK+7R7Lxo3vjvaY6C1+AjTuXlueaMXpKjNG3UQ
n3YRusbx7HS0bh7v9dejJfCLIjgfoBB8umyn2t8FAgjCxwHnfnujw47wGoaN
U9TsYeObfp7YGI/GAjdER9DowmWM1Xgkdo1o5HkbpqjPS69bsqFJlJNwSNbI
mYYuM07KlU7gxoZq3PFuervMryxMMgXw8LGzkVFztVA0xH0HREiWRaAZjTYP
9jRh3s447GNy1jNcEfw52WlHZ5nbBb4RMzsJpczS6esu20AK3LnxiGN1XojU
9BJrs5z1jTjpcF3u1wu51+kdKUoZpDWoS5i/FLG4Hv7fGZxfDKxecZhoansC
2gWoCFI0uZyFWilzjULNuldVqNHgwnLB3NysUoNFcnQByTuPJin4eq+Vb8NZ
Pyqa/KZLqkuY+KdRCWMQ6YXAXoVpZNo8xsvv7YjSHYIey0dVMVseChGZo6iJ
d/MY+jq+VYeW+RnqHeVdA2rBkSaMEyIoNPYkJS5hkJywc2pRIlxUxEkZrJYJ
jXPgvFXrQ+5o/RXh5ctG84yi4gLaAC/uPbuMxGlisObyGvlI3O6kwbCOWpKL
PAUbG0io9eEnqKLAugDqCgXcTjmiq4NuTEDjzFzysfP+Fi/GWyBEc7atZft7
NmPOutpMNpOO2Jzc1CmCF138iCJodJKgBD7HHG9i1ARqvjG89eg3vvDswr0R
gTAIml5LBwNNtD0WR1wQhagJihFgR3Ug5DumXygQ8zaB08QLMtT509FZyRei
DWcWj58iFUJQFCNXACe5LHVDUDRT8piydotXZkgXFVYLnlqu8dmpf2DmNIiy
uu+LULuRMjpVz4LGUWkbMTgr7dy7gqo+WjXhAWM3AhFr+ggamRGnEN1I+FNp
mAOBoieRlrLRYOVy2YS3xoTU8Ey8Nkls0jVhZCF2R0RVyznTQ2SHzoflrhFB
0Cl4wEDR0F9xwfUeXnd4OH+TF1PZQUHn1OtM5WjfiRu2SM4pDMHGkI/zVF+k
IGr1pNYlr8Sp6DNvc/p74Jqx905JEYFK3bVVBL1Ym2QI/hxecONEzYam1aQI
MG5xyVB2HeUFslgzycpLHsIEBvBlHR3etHBOMYeplpE4uIVzNixyqcM6IuEg
I4hexesTz6Pqaknt5qGhaqRIFcYnG4ROTYhIqbS5KZqIyGih4tBQOFJbDtlB
P2Ak5F3T2NJ4G6m2aVMx6Pzc2qQBeWfX3DbqbSU4vB0TUEczwSE6zWEtydFw
cWAd151UWeZghdvTwzCT0+GtUWgE1tGbN64e3cJcllW/94oyGuc793XU1ftQ
jQpUaycHdzC+L1JAV1oKdQ6UXTlC7S0KGN70CxrQ+ePNIboa9wL29IYnd02d
RxN1CprppZA0pPFK2rl4jiBYsLjkwZ2GZuFgAUMjDBqGDtcb/tgiGGfs7AET
lQB0g2A7FXcjFfg2DjV3wywWc/aIFabxqS2OreWU2eMEXrinDVUTu3KuQ3El
XVBo7NPO3w5OzVviM8zQBqMhy+1iIzPijlLon5ryGJj0dMyTxeOiLHX6oXbT
7UYkRcOUxJNlYcFCF9F0NDU9ifMWCzgY29lU3+ki6hrfuCC6QEXW0RYcdMAa
GxHPOTHfh5o679xwqTFYelNgbw4tg7iHuYZfL+ReixqpH7HLCoQLSOMcYP6/
2LG4Dv7fQZxfOFavGExsXl53I98XrlQkQdzAuNi6GpiAoytwRSJBJoTRwHAx
BW6j+6ZU1L2QmEir5t0LnCU7vf3o6S31S2HzAZ0VBc4DxMWdeycuGY31V/QW
JGkhjxA90Aw116Tb6o7Xl4Z6HoljxxdQXeCwWtFpZXavm3MKq3cOttKUZmzO
98JapQpzjBxH89lylDthCBKkczz5/Fyh5i7F3bcCSg2MG+Y1S9N/LtGRXl0y
y2ivGyCMqnQRC+RFR7W1x6ctbXG4F2hBwWR+4Vkw9p+iCWgjA+uo/+nBT+9e
yDD0IWAyetG5V3muFy3CLaWkpZjyYgThcON9HTQ65alq4Za1DOVjFznGEud6
5Z25bR8tOCh0u4feljm9GNOAk3OIRm+SbvdS60j54m2wcaZV23ihR1Jsuca9
mVcZSlgkHeoXKZUXII0vz+WFowXruIujuzoOn6ZGh5URiY/KoxuQw0el1n2B
DlOumYDPxYWkxgQgZZkIFwk1aOBb0K6TVumMw8Cf2wPKbuqsSItcHq3io/3w
vO6dDwYsyZR/JDUixysFCPlu9RESRNKNzKIQcGikZ0bppBZI8hchtrpsNEZL
QNrLImPhI+Y4xyCYrpZUhsxCV0vIOFUEWqhSG4PIekxJHhmcudOeOihuhEg6
wASUcslis9xbLElMo5blO53h/tMvJrVEZaGCDsXuKF4S8YgwNM1Tm8uH8Rw1
DpzhlLSaBbkOnAQIDQUX04VKhMQkN6HVkibG+QXZie4oVFJPQyleVq0appM3
MOZIQ0aSU7xjM6fIOhPm9HbhZjifwa7EdtdV70BMYZy3JviGMC3MOQ1BKu5n
SNYWbh5KBssaudl0IIaXKro30A/BZX2GHlrbTwFdJN9D0GlMb/kggwuJGrIV
+zlNjJ2RVig699TmzgH84WUgbKZeLqWwJp21EMxSr6Rc8nr3kbosqn1KSGqB
KEDA08nmKewNMK0gDB+PJvqBFiEztaR+qYFJC5qIQtAz31gPHSUVGUr80Lyh
0xOtczlyT31tgjTHAo3bFazCuE5584PWBciEpObOvLPeEiWJ1j7EMeK5iCpE
EqpILasXPskUqBkLJqLZySBgRTKPkKejpxe9emdaJ6B5fekEc+08XeGponUk
DjDA6eeXLaJVXpKMtAEH4uqcLtAzPflihiE0UEu7zCsvFX0kPhnZ9iHisVVA
taW1G2m789+l3mnv7Z/LjtkGk9CNUKldNCAtC6YLHfPQG35oGuOJtkTq4CKM
zy0oru+Ts57UnXrNLsBO63hv1V8XCmq/4YW1fDy1d+9cWQwcMIrzCBoYZgGS
YIIkqbjMcHXpBbomJDVTBRXQexvqVSw9XTR8DYiKxma04qBqIKsW65IP3iMc
4IP323J+LvMKZzynKGVUGMG3njGhOOJGVksYABpbD0Bjyr2qzCKMUDmaVPtk
W5HFu+YBmRYjqB56iNFXWBfHUu9kICO5lTV5cVWk6u/g9xICcD5m3AK3SFwo
VR1SMukymxdyC5qiRdNRcpEyaF6/ojBBUweGS43zXpRWfA16UaogvWom6siC
YCQRdo1FW0is41VSrAVcnReOhjjlzaT3ZmC7hZW6kZBclPv8KabmAkQxDWKF
9gmlGR0pxL+xhA0jQwOlD1y4gy5QjXrqKLU0vkhTcBZNDnXLvfRv1MATDhbo
2HkaH2J9gbMc63kDUonStgKORAdtD+3e0MhMe2NRzyA42k57LyK0iOgpEIiX
JDuljAeLikLPI2N8Ii1lHxdZymvSZOO2tMq+gmOSmHlj40ch6DULuEag37OO
RdpymlFqGfvOlUIwl6JDwW20NqWi5vSgYt3HCxxV7jCTXITZBSvCPFw/F2dV
lMRmxIXzFzWCVruxRsc+RHpO9841xPco5r7Qdj6ThiwoBBwpWm/2QkXuWDjW
2uBRCvQydZPnFQEEJYjP3tm6jqGwUgTtSmgO049ThoWOveB+hi8IErEAu6DJ
3BJw6lGwVOuY7bRe89ek7VLO+ErNvj5MxG2bgs/tRyZV50EPJcwqSymbvlzF
PobvV8QaFNOfmn9uXVwP47pDFtoCKa12be+04zUUNQ9FOERPnIQt08BUtO1k
sYzs47fYCpPGpiEwRzv7QAniXtwVsaToQQNHXpkTFjWs/0BY4c35kpoBPy/t
KxcpR1uYrNs7EjhEIek2JZFYaC5TpoeGBLMj60NJkiVPz3XcHLFS1TrVUb5D
dtBHloxMgxZd8YJWAQIXU9SKju8oznVSFsy4XuMLIt96dpw0tidCgsOpCFLJ
owwl8Rd2hThi5WIpLFVAOBMaS/2UO3mReio3jdgQU9upJbKAcsnqtDADoI3e
waouIdaSiT6XlzZ5kW2TajJVc3mJBFZ4Uwo0JIis7a2JDzKaa6jlCDVpC2OC
p4CkiTnFemtE6mkEzxGq1yH9WwOQ4i4ygkU3ygqvfai4eGElSWQqaridkLI0
5sWaZoEjKeoKl33pIfyEF3EXyIFyp2omh+BOH7pTFAhTjTlPw6YSHKeIBJ4Y
9vRRTq2U4AQRhYlHJYmnEZuydpE0Njt+OiKX+JXu0iJVzLiohk1TxysrG/rT
cUk39vmjCdeK9puLTnnjhDETIsk3TjCBBWcqELHwhdCEqtdO2TDpbzIpckZX
l1M20L3FsLp8mwwlhy9TN8ivgC9aNB24IFZ5fGFpnVN1Utj1CT0xICnzFY4J
p6yaTyfRRF5PrZ6meeKIKW6TIJckbMuLT8Ml7f1ULZi6dwLnKSrWliQ8+/lJ
Gy4V8KSHsuQ5IcXXt/nqYnhr478sMJmi2Qk3VeHrfZiYICo4V8DktKen6loS
5zqOVwhfsLZYR5884tI+fMpQBwxDdocyMUGJukk77ftJCeoXodM+6exUCBbK
imxAYm8O96nWwnU1CJ137EFX4zi56MRdwekgyr0xiy8Ff/J82B2t76JqO3lN
eeZkO3R5oP3Koje+tB7F0J8siGxzMjWz/Sos5aO0vzKgDXedasYyngXBqojn
e0+Cj7sipAmWwqThxYQml9XnBD2i2mc7MzJV3KduqXh1qg8ss2ZaY8Nlsucz
5Vc5YBER3hO4bC1WBGgiynMN31RoJqa7fC2fx8TbtrhlQQ5OpfOU+DtQOmM/
n17763lz58ReQZV9hT0TOJ8GmW1mWb7U8quwUS/Qvf0rGHkdMZ8atnZHzlSU
OB2IEzBexeZLp4tDTSE2udg/4WzmUtpXPO1gtY4rfV9Mh3KR2qHTN/r3tUJY
L9Htie3EskE6XQezYSV6oUNLpSfsGCMoVdUIenv5FooX95PaGDafY+hlwGAq
P1pNdLocsZMCdXqXqf5OBYVvaopFQfhM2vAEIVwp2+YnXLhUAabS5BQsl41W
YHUZaScL7mRFJgz1sR2uPz++Pm+PL44/z0vX2upMebIbBpnz4DUU9XnMjkEO
hi3O0+3jRy3N0upQ4aTOeE6m6siL8+BLOy+sMpNgQIvRzosZF3p78rqltza7
Tj3NujZRKzlLUYtgnutQAmYrKJ1zjNr69ung1sd5eW+LEMjF6WS8XT5dhEHO
28RPplNQquCFA9JWWcyzJ/dzxIu8YAq1Ez5OzjUYvCivj4AgI6LxV4ldEe7O
GNimpBs8pZPn7ekpFuVccleLt2MWa+hZGQTzmNGnEirIF8+CMxmTVj9V8TkV
l3RxQa02DZumJgQo1kxvGyRoUSlN58dBZAqzrVDO01SpQA7XZBinQBNiBNDa
VJ40mwqNmp7OdTuEOyvhpYBM2zzn6hBtS8hff/yXEyZBCmzAcxowVs8wFDly
ng1uJ95OykKFucFVJHjAobX2KdsD0VgEp3LSXUaexbnEaxFMKgJUNy1FFwQh
zfVuqppTvyGutZf7AuluL7eqrqSZxrn0i+4ltCsO5H7g3JuuNiTdYrKKtTGm
50HG20TaSqI9ypFOHchp1p5ajIj7bSXaOWvaakytQTEcrXmaW4sKnPKjdHJR
XKDFaOjEysqlVy4kB0+g1E4Y2daGlc0eI3A+xU+9PV5TZdypueLIqa+LarBg
0M7JBm4wtNlesDEB4as0A1NxL+89159RV1vYJhheAstJd5J3TR459ELxrpS8
nheEc7DhvEy3zoRCu7UqlCIIJ/Io8D8VboHXhz3P508eV2VCGxyZ3oeJk1Yb
I4whraEYogi+1WXxK1qVC9Ol3deCp5uu0YswuGffYf/hVFIsYNhUDapmHMQ5
5X7WeZaOuBsj4TihaRMnb40zueKnOE4mSMmlslLUt5d8aC/xvbGqVPMqtzp8
Pvc201Cz4ye6mjBFviwqzOlJS0cqYB0uimBV07vUFE0zIVZMbjPGjTvdQKga
yys2IQJ+W4SjydMdfUw4YDv3PGzRxBpaL6uD7FCsF7YnEHe6TrC0MKxwfDFJ
4Mugq/vDKdgnSUtCN3l9XAfxW2rRF1m3J7qyRThZ51fW9nZRnA89m3ZN11LI
srgXbNTrmfzn4Yw2eOftzK0d3h4/mjEIVElndGZ2zlEOzcN+2E46Gbt+dt6O
s/DgulU44wcT41vanT63oJwTPqGVbdq5DqKOjJOSCzBjf3IGNg6AsAK08qKw
zX76p8ePMCbXHd7ZO2/TaBrHKOkt3JQIMo3bI+aAS+LS0PUY7UCJmc94nG7W
KHTNcFcrODQ+UTu+kNwnNTgn1wiK2TDROc1I2TeL7G2BJOMW9hk4PUE284sf
eXguDDTwSQtpJXaN1/jbFiBzUgRBEClgogKWIxo2oLJoBvf9I8uawDcydUzt
RhlCLicZCTojXnOVn51TpIiQGkQij6DqWZ8QbsKBu2bn7iBHP61MCVLkdeBS
EIHwUaMDDv6yIERSMQlbvWV0fNYQ2hSyAupzbDPOHKWofim/KKwzjkswPmZK
K6CBTgS1VMm2cr+L1jadfkTZ51kZoubuRL4ZmKKxnbjAs5ieYxbPGriZbON6
wZ/K5kPFDSYwm3c+bTNHGd6FcbSuXWv8lwUmGR/lm+cmSTpStS6ClZvG1VTj
Ij9nXG2Fn+0swM55Ld6xRIT60kXbzr2h4itbGT8gPPpC6hdxjvVCBMQ+mnmB
CBeULJIEh6mzMQosszqRn6dhiWOGKso6tZ0sYoJMRxOR9Lk4SKUgegS/hKtE
JwLcCNPhgsxknotYMYvGByOzlHEnlqjSpGIqIBNE0TtJ8ORjqhSMVTAe9id6
OIzuiEwXQimWxKrXmHrAEuLYuWdNKIsd8sJM9QYMCjYQpnGtY2J0qeNla2Vk
Hiek2wwqysy3tOXbobFdwGcg3ozjKwLCKZmy+FyvYZYGoRhnYbFKfBCEWV5a
DFWLDCdpG0eTDFXAy9nNNsPEQzC+dVWZNeSCJcvYHockLdWSU8z5xuEgYKn/
wWhpjTz6LudD0KW4IGtmEQ3mT5Llc/cRchSa/xiyoBsyFAiPIoVU0hDLGYww
k0GUBgiW19ZKugNvhX6UkqSHcTQJumJoEZyxgHPVsH5V5mpYKwJ0XYJR4WXN
iW6ysARHOAU03wMJxR0miSV747GoxIFMMvFso188IMtImIuYX6SVxdFZMYjh
jBstHp97OU2fWUNxyaha74eInEscQ+7PUDhIAZI2zuRT7xuTtRJxdV+Y2Qpc
kllZFTupXC5NgUvAh2CBBFGMPGu0TM+QCyo1OVsRfZ/IWMTxgoykDoHR4Hod
iBc7ByRyVSKJeFLNNQqyHcFR6JLXxCW37TwZ2SQbPE8pm8CZcx6ZCUDxDSkg
ke1k1zSxZd5ouMdNEuvWSFKk/wmBzjwkbszIWXsdnIVh7ovsJYqi0qSSJpRT
FoKZtO7tWOulcONA7DjioT4KbWhJyP0bfTRDnxYpauVPyR8cVEqDhMxnohwq
ZhxTJZGRJHeGSUEYhJ5VV4osWgj+9NiceKxnvktw3hJi414ljWBjQvnHoTgQ
uo1mqXFu7BpfEANRp7zA+QWUZSJEdAs2S0l7GSLCChuMjhic1RklvmLGyBwJ
h58B8j7jUCipVlK+czJS1FxwrKS2BI47aGlCQuQN5IzIPwvcICGl8ZGSIyBu
BumbZGtjsxhPZnDQAPGdSaQhL514asl9Jonxk4iHi10MO8DSqI92l4ApGQER
mMF30BiPz847gmi0HMFlWQjV4ZxDz0wgmgXaU3bImhQpTPMioPQIzy7wtCK5
GDGcsZtqPL3tnC08LIFMPZUVoJlb6DKr7gNnMKSb8VD6kMsECjKl7BXtnemw
oglewWkolg7RTEpGcTPcCF7xxhoLAqsNRR8scmFpxeZGxdmb7UaQn8Fs0SVo
uKewTi0UEjZKHNEV2NMHnGw6gojs1zxVgQqM8reR5CxloBNXHCjSyG0NH9WL
oBVNcLwjqMVmx1wLdBtsno2zF3WHdDsI+DXGf/lgQg2DtI70pNUZq82VS6jk
TlfZ38Jybrq0FM78yb4DRelJ3V2WaLKTXJ7BQT/DJnGCQG+pI0KyZ3mvU8yK
iBcXKf3KE3oNYdSpOQcjx2hbwEGgBQVem9RQQGU/k7f6Pdm5STDxAeuoE7YN
PbSI1G+0fkgenbs9Hk0pDV5oiEX6XEDKpdRT3SYS2lP3RYQEyB1qq+PJdUdu
dxwwGolqa6shlVDODroX4szCa9IxS6FxM1z8vatBN+7NZChqLmINriTFQ+NH
mNBJJGA3cz1B7SjSAeedFYCdlo0xrK1X/9QQEnWxn8mWMKrMtw5wnXdyMiRa
Q1YRJ6Vt4BR22xq0bTMnuYLM8Z2F7PP6SxhSXGipLpTTVqEhN1FZuK+GOKiq
tDp4GwaH2HqwDCsvl7LWxs5zVFQPJd3r8FJ2SMdOtrHLvEZgvklwERF0s6ib
HaBr1HfYj6KGtlA1CvXRbkcoCeQZfCd6wwtKFiCM9ctMUQ1dimi+PwWjvRF+
iMCJKTRoMLIVRM47rxr0QCfmBUm9DwgMrT5CUghe9l00B3I30zMsOEQP7ys8
KXhhznpixbqRSZlXsvil7iLpgDQhFNOycom2EKMcE46vz0s9CSFA6+hOTA1P
WtGAyZKB5MK6Xy5/oeexhi1YostbPISlplQa6Vl0lrXIqRWZQ9O1pAyMM7cx
6E+gtxRHirtzuIth8pEbauokLlTxrfTEB9BIWCq4OtEs52YUNNRQ2RSFGR22
cZzzpF1eOoWlja12uTI23hSZJY2ESfXKhdrGZ/Uz3Z458Uz0uJFgnacBXRN0
THONNATapUZ6G5CB1WUFstiZ6aukVkqzNjzc9jtitEUp8Z3RvDQdUgOvvf0w
FZK+jjNCyqhPRzxBp2EK3MA1yXHRcK4vZDYMbmmLMrA3cAAtkKUndx2qYIFd
oY1kLWo6OenUPXfb+Fu1BhQY3pKP6NnGIsvrIGkYAlZeZTgio1MsdJxElJ6t
66H3jbqJBCq6+GhnON4yo1tmBLggprylA3tEOpe4OStH45oowg7GlpbIrpc2
DzO9hs6EnRCVU/pIXPDRdPkp2x1SB6ddpv/1QNB1JTjYUTdCholCFDzfqfbh
/IzIPyPZl5aJ66nYQ1BTFaDawZUFWYzZpQ+RAPHscwziXkeq0CYbecHtWWyH
CBwijADewHfxrhFn5dlB2IsgiDKMIqeJzJpKZgz61QhR4Oo8lXUaJGZxZIvm
tfCwoYZBOMO1W2PN1U2Z5mQTM2KVj3mqB4TOS0DI0+KtbUTMFIRAfpY7f1QR
NyTZZg3lTD1ihKt5C6advEYkl/NxroeQqgn858vy9kgNI3nX1bPwvWjOnZxd
dUunPnZxQOJeoDryTrpHYeYUvSNbGn2rMZ3rCMi1gqvw3XKQJJ2Ehd/mEU6P
/7LCZBZPynmljaNBU9OSSsQkeic/SZ2COFtxlBzvxPHUic3DlWPKRFhSq+N9
ZszTtCkRXOBVni8cipya6eFAldk3TxdH0CjpBF71i42xuKBTcvoxIPM61kRL
qCgZ0yTXIpHiBn7puPMK2BaWFDVFGmziAw0ozUyZBWo/SXHDN/LsHXb7E3pz
MS/A2CUG+mjTBODZeZ9KjNdVD4OWycbVIbpWxJHiwmvzeKXHJYRV5wIVZykX
Qn/IFyupRDEi32ijINIs5GlY2YEeADNwMqUGIxC11EmI0bIg50QoQCgylKk4
U0/FQhmtmwWzm2xDpx5FhMtY8CxRqXjHoALQb/dcw15HNlg5r2Elj4ooaA31
cXQBGK1CdnQZK/FU1xHaNypD9K7COzzsEO8Set3UCOwdWautb95RaYQPMyhJ
zrLYB9pcXZ4o5IhgNUke7gRkd2iWsAr20AXo9iNoKaHYkoKf4k6neREkUaLG
tCFf8DwCvtiGXpo6RnaSMNmvoBi+aMXGXRssCSk2M+nzYIlQ1Mt5NQmkwgMO
CUcjXqTVRFyYZ3k5GazAf4pFqrnCQ958GM0ghqRNNqhHWkoXekjgMAEkKWIi
+HMEGk2/4xry3c+nZ+Ul/yOvZoRYHeWknHMCQapeZBf1roW4dVzWi0TIqwAa
lnYS6i1BsTNkeiOvVQqwIxr27uz6aHMoAbxRPFMb7GSXz5fc4I9C8yY+qmxO
RTnycMwOrbygve6DpZoegyV7MkUP4/7GiHM9dcernfByFQzzbAurdtznGpkT
Kl3lHcdCAQmMnUVjHAHBlrod0CDcdXzbzPQMTzQ7b+aH4/h2XURkKkDZyMLm
wpjCEjODz9vb9dQFxdS1MfsR1tGe7F1pMNuQvSvGXI/X25WOfEPzNhnSeTV7
iXB+PWUbT1RSq8zrOeE8eFSGHoc7uy5tKM7X4+ikUx9NYU5jNvOJK+ltEy6Y
jm8Tbi/tobc8chM+itFZ8/VVkqprJXvLmM4pdrOJW3IcNcRCHp2oyQGdr8XZ
eXS2eh3Sap18STSYV1NM87/mQAhrkXTryQHn5nvMEYU6CynNRciwg2vATr4X
UbDINolgkr+XhDvFcU5BKWGfp4vLRDsO0pxQjCkay8VryaaS5ACfR0j2eziS
qc0B5KjYU4pRmD2P1uYkipTjW3zSeXZqavwKjT9fTHiWHOKCYBWFMNpaUZqY
MQMbhpqlIqtWNfN1nKKarplPeBqqZOl46SxdFgTzsnHW7YzEZx5Hg9duPD5N
tCwhpaBHMc+wlOPME2cqxyVTylpvipoKTcnkc6kdmXs5Isn+IhZe0QoL15Oz
TJnhPTYYWPHEAx0SaoIVTS4Q2eb5NNv1pFloTIuA8L1rxJpMLYzRkJUFayKm
VXCnIihDraVG55/AOTS3MaxxnJLSE2DazyDFVViBc2rYKgxlkNKYE0oyKsNa
8npqlinATxAJIda4RxAqSKcIMCVc4W3gZ4GqkvaUsxOBOBHu0p4T4SizMvkS
1jKNIHzq3mZeTS0vgkREvYoKFkbmyBbcWEtClRBlhLMjwZh5mm5eWTurBi/5
wziLC+uJrukKM55gsg+OoUQN8uIi9/9NSLF50RU03l6GwT06J/iZvUimJjvX
qWDRtkAmUn5RhSn2dYmEur+xjgaXw4ZPJ/igsV6HenrEHAteWcLP1xEcvgYB
Kv063FtLZbazDNy8qgsx3ajHC1IQhqXxT24h6kJ+nq4/gTCNX6yspwI619mV
2LE7DReUmJywLVgeHVGJO6EJJ1DNt2e4ymNu1MrznkiKE07llWZp2Ak3A9Th
Lg73yBNbTNUmVe1T3uKYGQ5TKBlQoTkBdCeYMI+DTPoVvZjuuqdIyLmTJypZ
WiYXqZOGdVCndbwRs8sKzvuNRody/CfXKSDnmpOuibVJXhyxXdO+6BpEmo2S
W+6pmpSt4+A++5wvMNbNMGzi8DpjqN3XqNWNwzsWQQeZyCYmSfvdCAh2cczT
NezU65vxPBUjs9zbS10k8jbjuM/T2FLXMSer1lbU1uwIvB5HOLdBpLUYB7Q9
pUbdIcIMNnt0HCjxEdkHT89tna5BtOzDSWqlaF2feOjb8kdY0s6J7nLP2C/b
NJtjkJbpGtkV44sXc8rTrDBEpJh0c8GNqchzIUfmrMPZqoySWGthGimNvIC8
SMgg+NB8TVhTDLZQ3VxbYq5LBxvmDCalZ4jor5jzWjHnfiULDimncCC+jrdA
N9ZVIDxT4kKAVnDrMCwl6Tk9fTgOSPYr85kY5KP7rrYpq50GWHEwsRsEbvQ3
SsGcADeGBJdBqrkpBtcRKiUeQcip6IPzU5/8Rs1fMzcsFioaZWnAoy6/BaON
aulRC1jB5ZinrEvF+HMMpQvAP39MmJb+EbtANToLmhvv66Y1+Y5yxiddcOIq
o34r9ntplmo+Z6EwwHlqUeB1mK5BwuL5hdeyAIVIk6RAagNiuUkLXm2B3GaL
Ju4NtY+ha+awxyWx4fZmXhkwJyiQnoDX5IhQCqGPVIltAz/fbFhFjUv0qXcI
a5nLTJUqwNyWKSiywexALZZfXO/+eqWI312ppyBNwI0x0xNEwZ55PMnVKnQj
gwgg7jMd03YwKEHWEuuYWVHGpx9tMGKcywi6VZnQEaG1NqAM7dwgxUfna+oE
grWFvCfCr1tmHZNKO9KUm/HBB7VYogxaHThrkngyYwUQZYvvQaEK+Mhripoq
DOkkNTAqSoSkMmdNcqc9vIiSJbLI6cSmLk2qETTakEoQvM4KY45zJjzYysT2
yIb9c09q0M/Jo0S14ivaNWdWGBq8DIFK8NLPEwGKZ/RGAfJqwhmtrQU1IUEV
JRaxyKpYcQ01SHnFp3hSHUEgbHA/JHNTNafF+4zv5ZHPQ5ZRfB06Mi+zDmT2
ziftnCgaaCRi7V6H0HB+NVqtYkCpM/GEip76woodMalU9Jjn3pcydcPFtoEw
rnf0Gu/qgwITkxl/ZJz3ouRU0X7gxXBxbK64FbQegxpsZWC12CSGz4trmDlT
HiFGUjHXMqmqvRYml24an2GJaoOGim8MsSONRXxbkRG/i/cx8IQi1e41MBmZ
ufZu0KziC4K/a0aAUcph5RYxIj/32QsLKS4CderTKF9Sg8QGgyRzvtdCwB+F
mLIBXp3R/XIZUp0nGyjT13S7Omi5Q52SlrzofpAmpTfRptVBqElwdiHfi+bK
7IQaD5Sbp2sIZCtGaz3PlZQbSxMTVW9EitsY29HilhLhEO7RyJId1KXMwoyS
TUXto2oS7Q+SS20YGicoTGgqkEQKKScd7WyHtgEIxBLQmOoy8swTa7PXE774
zvNa3iLKmNHGIfLbRNYvSS/nRaeRWWwESLqUeLoR9pPIBKpTdUOKCf1C1jQF
4NKZU7d5TiMTsYsNVcpuHn9sRNfiqWOYlzmz4MuacW44oHDcvVurPaBNciHm
kaKKUuUEgwugzTmZ5yad03kacL4mYJHyZA9HCm1MSzoZqMX7dc7MRMuQOz6L
XRMxNKjncpfUQYk4kCcjpWFLyK9Rm1j5SbJKk/KLYCH4T8sfqlPrJoGT4n4O
VZQ+1mcRuWjiIJLmeob4Ng+fho6dwByZs1aoiXu2z9zwSQpZMwu3F4Ipb4Vj
dpdFE9Ik6noOR+g1Um8ebkSasFMS33kaEG2Gv/WwipqxVZAsyqBWDAYmBqkr
RmSvaGCRLCRlwmo3VSYq1EZSmPNulEdMjTY44Am6ehBN85nJMd1ct7XfkHyM
EdddC+lU8/i0qG/oo6QwKUO/Q5hADyn6rJ8VZ7zXnYOTzBw3I5CHEEAxQlx0
iaEXc00JziLRkIDQ1TWUx0MsTZE5Lh2+ZFA78z5qzfhrFqswoskU4aLMGruC
RkLM9Tp61GDqUcpYnAlelwXg38ASvp45wAu9tUwt9BYjSXuVhMJnXUpr2Wpx
+zrMQhINjhnnfQTJEUeGkF9z9rWASEXAycbdpi7KcsFtZ4zYmt8qhaxahSfX
JCAKqX4tIc4bBh9TILBUt0xRKMlsyUQubUZydjxUQONSrBqhGtq989Q8U+fD
FGoEZ8p65iFW8WywqEQ7QwuRlFwi7mnC2ZTEcx2MpIlMUubRu5bQtvxy4Qps
ZxiFbB593qUx0XPCszSx/PLBWuouEyViknI3sk6RHTJLlKSNaFeiF9kFwFmy
xiqjadvailKXhKTbXg7wzH1NSrsOdzW+/8b11FLDFy+i/CLRkC86kgCCpWnB
rvM2hIYqsCDTiuMhf9dELUiHUY7DoZLCtBGmxWg2+ikv2VJdCxnE9BNknIFc
cfj2lq4praLYCau1stDgcx5chYjW4xRKA5O2rzncEnGtsGDv3HMf1lLr5bTn
LoKJwUwQy9swUUpDDjdpBVsYtEL0HLqXmvmgP/RRDFOcXajIMeLSLNrCiYag
z9d6o2ujiHkqhZACS3b3dE2zIyuJQqyiMSKqEm4JiAQmTy5P2JICLsnHqOQk
BZqGXh205IVCaYHAc0NPK/YFuOHi8ee54qDu0LPLlGKk4UQVldbUzkE0zF9R
FVOkuS/01gQdgWkdWhsj5bITK+DgOL1wqIU87Uxm5Czzh6SyozWDSlQgmM35
wa5s1sn3oDQF5GjiW/cIUW6jI2sHNmUu05gqAnVHTD9HzxTJKaeqnpSBCWwA
CqM4QUjTOIh2MXXsNHKQzfPgIJJanoCwwhxfzPmkaCOLeSseseCI/jBojRwh
Pc/Decaq1dtVxCQ1+NOmuAV4Kj6iJ6rAQsgQl4BzSDfKDgSlsi0ipprPPrJO
RrT1lnXAjSHKdSpEMATrcO9tMXD7M6zY7G9gbOUpU1SSUUMftTS4xqxOeeSW
y1yZEolL2WyxvMU1xbDQcNUiJjmJmKARgk6OFHTNoYcm3CY0ays31ZcYFDX1
+OK282PEOTSB5FTyinxnA4pApBzk1FsT5muOdaV+iaiUPgxCylNRb4KilpTK
61qEK508Z0sqApxrfKdEhrNDqqG+EEdYcluZuiZVUKHsjt8YbHYettFBRw8w
ttEYrvVrBYc5FozPIciChmxKMJ7vea6sY/Vw8M/1xZoHDITJlYvxD+SsJD2k
cJlT5+FewlbQKNkYDNOQ8cXneqWQJIzwkmGCWGunJI4HlrIZrCEpyzAOX69S
HNJQmqUk0RyFKH3hZNLMIqYZwFYPpn1TRHBNCBdNV9LS4PWkp00c3PHJ2Nae
Bra30UeWehhJLfS6yoIho7M4FwmVKHqe/JWJDidvyzISdZjeZspFAQmlR5E5
D9bymApa3Va1CldQA5plKkNjatDBpfOcDUiDZIYLhlkoWNWrqOVmNYY7MV/A
p0ltotvW+cbD69vy7EV0CN6QiTEZ9W1UtnAZM3zCHQRCyZZrq4BMkxZKLqkk
vnhlRLurTUUU3onohAoVzmfae5PPc0VtCeO0OnWrVml6iqkERc1A9TcGjvui
Nn7EIQj2+9tztjkYE8YPjvAgZbLkxKlcw4yh2KWAij0TCVgTOHittTJDmnHL
F4RKROG4jTNOUA0WuiMTubZWa6X6BHdSmoRgFQTjqtHSz4r2kvJMXbaEcjyA
wy+CgKwzAwkWccFPlpk7LMOTVcHraX7K/oO7E2aJ4nYwRsRcerDE7Ux7MRLn
b5OLAwjNseXQJCpFbK2+R/NKkpdHSCjWwFReJQFbXCMzliUgGSkRcUKmtraW
dx0n1wIBv1UyBI9CCeCfWkzPMwcY/7YgiZAt1Quud8FapijHohCZXG6CvxXJ
WW1YA1nzhbqBKoRGDmiOb64Oob0Jg+fwcQaJaEcDbrMrb9NELhgVpj5nJLXa
BpRCuIUtLpI6QsRBk05Ck/Fs5SMfP5ikIpMSp4VrgTAsUEFUzxUZkfdUJrJS
BXjXBEukViIq3XhbiMXk9TjDun2bRsFGC2LOdxX71czV2/yCLDhiaouLzydc
VnxuK2BUBp4nw8I47Ps5v002n///pZphcvM8jINvYv+Rld7/hLv7NgQeULKT
fjvT6aSJbVEkAIJKXzuo7EDO7SvDc3lmdEzm/6ZGLtaGyPqzbaenugJzPBCQ
43LjWOavXRGno1qFEaAKb9DxMGN3bTtL0V+MbcnVT4thwae3luEFFzZ43r2z
pmgLsGgTvrE32UL+cnsrgRV7iUpeaGZpNtH+8Gmx7hTG8A65ebf3Te/7v+fw
UZsvtubyaejtq3f2Ter+oWsmkOZrl+33b3W9cxsbbj8E3S7OvUDreUVQvgty
kg5Jzqf9IJPK2FPanzA5EyFbaFne+7pdUfuuqV0/PaQ9Nj4R7bYFvFbZD1IL
rrttHgJYF/B25a9SLRWf++t3FSm1WUetJfhEi77wXduu8rw80xn4cdiLxzi6
w3/Oyc+6+mpmjk19W3tKhOz6suVolSC+eQuJDTBS6vOxu+fo+qfjxw8/7J6R
nBWNyE96wrlkpiVz7uG9ZvvYPmcyUWtd7pL8s8BgV3HozFEb90EQQJWS+9Gy
/tgZ9rREE49Dp6gI7i0DuT09oPwi8p8NbueykQVCNyq32PVpCtwX63GVnrq1
LnfP/E3RDx9VD//ZWETpTPyzypKf2SKpOqaFa5rQXdA/LG1OgfwEThB51MmW
dwUIP5k3uvRWkZ8mTdsblzlCJe7CWPv92d5eKxaX7evCwkWh+xYi83zmJy29
e/Ki8CsFKDu3YuJduNW68f0Qb4miGv1UzZtpaKOiU8vlBUD1GzOrN5h3K66Z
p0xtKt47+OTet2GHBAkMWMJPOCSD0ytmnF+cRCHnxwKksBw3GtjhAUedddxg
/uCnizuKzLCOG29mgC1XdigeQZDE7Vx9zoct795fxeeGs81f3axyZ+bPBWDH
5NSzhLT03A1BttFuvCj+DNeH3OJwmLcf1LRF1jZJ6xvfQ/oQ2oWiJWPHsty2
WaNTb+qyMv28ncgEuT+6zUczeTiMTFpO0JvN/r7+Nx30SXMuWjefMJk13Z7j
rQNCmzX0ponZ9nifGV65OyTZP2Gb8L5onyZWFG0y8C977dR9uca5eg4pDMDd
rl+VtN37Nn4/1JbPdsh34bGtzz6KHuvC+I/sHZHe7wjOPLSZgk9rTbD7rjWG
udKn9dy7SH7aY3eDRpII8R/ZFu9M2nboeP6zmdLnoq/zy5HP+fd7tq09jELb
8LYx7BZ6evI3SVgnjmMX20M8D8E/Z/6838jH5drrJdtzveA5S1sYbG/8GM8d
PJ5TcbvEeAqjQeJPSxzjq7R/FeTjp18S6vuFPoK5pf1Pyf9/JuSOUHgxv1lx
jX998vr6oQQPQvfAhW2of5XQ/4bSu6i+efhDhP+h1sfu5znab6qwXfQbbN/h
5CGYb0DyfUIenvCckM+itKvpR63+8PyxuX5d4vs8HDexxV2Lun5T5YdVvsz2
NxX8+P6X9Glx3unSNrHbP7e13hblm73ER2OfqLt03UnWN+98zNhmC+P24d9s
/CO7txl+ePiXdf8mgI9P2DLxTmY/pHH9c+Sbn6TgAZZPq9wk+aO27PIwt5fd
le9POXnO/12E21o8o+juluckfNS6m4/mw9LHcvvvLRHMiE+/UYa7bd69frj4
odDP+Tny57ncD4E9XPa9Ajxfs+URw36Ovwc/Njdu731Y4suqfXzzuXzbcj/g
eXvBHY++hOh/rv7Hsj5s547+dzv9mO11Lx+pVD994GrvM59/Asl27w8JOXfn
Er44VejOtd7t9HHdD9d8k/aPPw8P/8jubfa+WXH7+5ukfRS350U/J2d8znCP
anfLv5+53ujgx4dVHrL9111/T+Evn/YnwdmW7CHJ34v2l9n7uNMW5HMkd9m7
o8Nf6Xl8Stpz/v+03Mc6PuDnOZ/ffFovSueH/zxGLj14sfqCGsH/Em3WiWu9
OaTG7CPzLJV2POP3TbeVX81/D3dDKzpOPfn33n9XbrrVkSGdY72m4rlpSSz3
DlTzN84jt3n8hj284nG1GWoe/rJjKoy+9OYQex7a7JjanR7lwEZssK6MJB+s
wrJZzP5R0wMICXiMV/8GpzKAZ/aveM7WvrG0Ixx+f0uZg3X8Vw573RXVo90b
ax3YdVvr8BZm04eDBxGjJyeLNbc7zaUL0mPyfeYwgzclN4rxm5DfmAferN9H
WyVyPjeNcjjJQG+QdIVWvZkILGIev5saPUWNOw3nx6aUv0nrtat7c+Z9kzQq
TvT25YSTzGfbLO86FmoztrYv1aKZ2Nj76L83otSVIXVvxNLrz/v6Vndw51QS
3shhI3i1e1sdG2hb/EtIk9H2VCDUwgNEmBoS7abvi7lttRbajQezb5L1xBjD
yzzPKJ+rM3vGHHOVcpiSBx+V9I+GCyLjUa+9SlwlLHmmevQnu4PnRlKBky8H
uOBQr+K7UZGj5aI8idLQHOfkXcTabCoeom0qOo89zVVfgzw5ckPzEak+/Trc
SFOGRpnGPlQnH1Uwc8ma0q5DcRCq621jxwlAKld58URUb45AAyuBpberqJ5X
aM4SQwFPYUhzmJAxsdlyO2OBfdjC9KtQsDU5EecQbWclpOA3Yi+R7WaHOr+I
E5d1B4kZDx/9/SYyQatelEL1ppuwg9BJaq0g0dEvYEgzYo4gO1UhJrEdVpwJ
PBYut4zJ/xBCDVrnkgrPC90ZFlTGq7WA3moXFsfr8TJmlnqxggLDyo6DTwMX
klwBKsQgAOda4AKrf0oYF0AmKsKj5qeb+NlSsYWcB8ekYK4KmQyVtkzKuEvp
WnR/G1AcvmuloSbTRoETt5M+BysOJJdiTCEZi8ZojLVmV9c0hJuQAKRzv0dH
eEQ+ycd9EXvqRg1BC0GSLEGZAwgHWWZcRsMZlmny4tzjbBE2tQGuZsO2ljYg
h29Z97JF/m9i7/5tbDn3IFWbKt6V4M3iY6l+qm71qbGEmkIkcB75O1lmLMVw
Hc3FtSimF+TKp719FyMX7EcsYWhdtAEY6ndEZkqbAsAzTDY4keLYPGdJvj1z
PxOIKo+UX+ZqD7kN3zfQRZKpacRtcHwhmrwQlaQNCBlPkaVdNrgKU7F4/mUL
kW1I7irO50oiDrN9colDsK3UN3++zf+a+d05xiTXeoSL/U6QzMZxApXc6eVY
pHWfXlXNvW8dACEUOTC+3/H5zOuAkpzefkNsS05ib9GZnpmlZf/Tt9nGzPg0
jfrhW17que8tWNPMjh2zZsSZwXQ828TOJTY2+saUBoM2jOxlIVjWMeAy1aN2
hzmkHo+vSwzzSP9tdbDuxF0hnpW0mM4cFWVneJUwWoNhqBAchX4PuDxWqJuQ
+G+cCzNhnicr/rtBDK3BmgXqvxfT/okm87CRK1H1lRNdwOExNu8IJxjYzlvS
S1Lm0ZuXPVJljMH/tngltp3JVIbfTtuwyWZBHZCYTGQ7xKphmEOTEzXKd43y
yWxnjQuj5GhUIahLo/IjJv5mqfKc2v57IpFdLLAqnAuxLw8pKQ6qcsHb0QYv
BLMgHU6VsWs1Gie2JBSHrjf6oMMWnr/puzb0AjZuqKuRXPsN6XYjGAqP0pcJ
H9pmNDuGVyotqQlq63ZdkOc8RQqkEUDa2r+WTElW7+wH6nIU9pqQMp42jNgb
wNmas2/Mw+Ximkpdn++oFe8KiuxQgyNeh2IXpIXkSYydXF1/em4tNbMfeEXp
xzRmqujBlBHpWqFbtROF1TVe3qB6MVGRWcqZTlTi1pyZApiwN8UObzOn8lUP
rUJmk+CtZjelS1Zd8WWIqsvXB8KVpNLd05uCCHNuiqaJb2brO2UpmAfDNDM6
86zuw54rulk/hyseXcAIcQyr+rF3VCGit57jlq2Zrm4zDDOKgMHJuRj6zMj1
PZ10cpS4sX+B6REMMTMEBqqlrw9neOmQGd4vfSZMYBhU5NPZgJ3ovcCSfjnz
XPHgNeMV+BSurPY2HmgHmI+aLTeY+W8exU2StDUaaiP2e+g3CHJuC/cu+oxE
bf51wXbL/ato0iQ3I+csli1MoBJ9DPLkqRti9N+SJh46wUI01gt1m2MrKF6o
ojaop9nGJBkN18D8yOVswCD7qmNwdoqAJX0T+8J/ERgVdUuwQAaYiEW7KWRa
HMgXKLwhAb9BxSajFQC4o+ezY0Z6Ra43YqPXGH4UnCQCImR1nKWpOhoqaN8g
Mvxwo6rUQ83C9t7jgHsi5zVPgvyaW+BfCDi8I/M0XU1rN2tXwiqxZeunsqoS
ZGuwoA2tgn7tMQcbgYQ2XQ0V1WgzHLyE2jLIeBJU7BRibuMm3uz/yZA9qBk2
P59ocQUlrVUdVi2loG4Mx4jSZ5bYy0q93Zo5E52pNmwTmQFf7AgBSBdloDQE
tn6LcWgTknHFzFYFKzs1W7lFBhTt6s8G7zhweKXCey8thpPbH8gYxPCEthek
2VJBbbvB4AtAi+Qz/iEtfeM5jQ07tXsEOjIVgJicUcHC58lcOdVFXnaTRknI
Guw6WgyZ+75RqZ4I9WXGZbMWeE4uCqBagWFxmXY0L4k2LFZJLprjjCI2+pub
pY0YUQUzIjOUxwLlzFONT8MmxhOnbujKjjqTsUAlsrPvLP4TwTt+Qou6wUmk
C53qDifAVsXJyDiERDhgJ1+HhAK5DQnlfYbCsO6/7SCFzpmprblzwR0ZJBdQ
cXm/rcqqVEqK5hToOUJtoEXy4dyIQMwL7DJkLsoK42RvxuJWP/X3CLyFmlwt
r2pR9mzuUMe1Gqc4T4VsQt+MtHJQBLAzwBkQDwGoRJkLkaMEqcwkb0EaYm5d
og6ESk/ukbMAPhIsPfGd60PeL6Ya1mG8mV/n8AN1RoRZcsZJu7bD+UIsqO7j
RqANXg414FEPzE+V+WgrpQA4qtXsNryWkBBGiEzHCOC9DJQDxXpnIKQjLJkl
Ak5YXAPOraXZel5ROLctYUYRCgMGZyNFJUdPW9gEUSJz7Y0v7YW2k6d2s2GD
eTurvjAGMgDQJRHzalWuH9jOIylT2qXiEs+llrLxAxuv7RucbEbRdHB2pELE
qXLGPLSpAtKF2c1lipqeWouBjUia6AkWW3LDlbEHDW5HGNYuXr0iaCKHWBxu
R5ppdntroDMFtkA1EUN1AVmLYTidqKktK/DpXnwF+I86RAVT6AHYZYSZUGwP
CxouJBSSR/U7XS/+Qp9tPNB3VDsd0opKsKzYr3p0mq4QMXPZNkNGztyEuFWt
LZKWbjPa7lS9XoEZJ+JjdDelCMC7EC0kGrMhvJ/SpTJZY6lv8lHUohduD74c
rJFJp74A2l7TUtMo3FSX4symYJFsIJFalv4b/Lilq0SnoVpAdCin0R0tQ3ot
5XPhfGPlHGQpP6BeczlRtYUErR5iNiH4UQOI4W2sxiqOijt12ju/2OsR2Ol1
ix1FotoguJMaol4myVVPASmswEA+AW+CvEuDokjxwMRXYCYgkegVta1R2pow
4HK3hoiLaQCsM9TkAKfEB+uqEfCgowT2hTAqyBBeVgqwHFbdnA5sb06/Lp0c
JXFd7bVraoLyaS4wh+Qd23QEBtYrBssLNE0WRSEZbG6dCow6OeV/TnxkS1+Z
7G5QYLOpni5fWCz2zR4tPK1DOlmOdCmHgrEDKfpX/NY3Q8tMd1+7wET4HIZB
Pam0oJtrifrxFGYNYQagYIX/02kBoUaUgObBJseQo7t2GKGiVk4jk30WQj2D
xWgckPFSEliU0+CxXFCNhZnSpUmC197LyTh4dD3pZLpiCWaYWLWwyziBy1L3
8WFChyJio+gJAG8UDQfGNJ6ul8yP0ULZdOclcaxUMXrUfAptlDIQ5COL1aXM
BwKB8ABSbTOwRxOS9AHUTz0TvVsMsuy7EWhOtFLhYAG9uHqiPOQJVKCHsuMr
EpulqhRAYh1AGNXudSwgyvS+dmGDIDg6lDtaZbVZ1ol7Kens2iro7NspDlYP
rb3bP0xn3t1wket6zUk88eN2jD6SSbZvcbRu6+zvMkXBVg7doKG0VD3OTJQZ
9nQvPAsVsSlUXDgBntnBQzGELrVLo10WIoKfIik0XP3U+mbLkU77lOS6Bzna
Qqaj6pJCGa91Y1D11KleY0iTtiV6al6CUwSGtpKQ6+LgogixpX4iyJ6VBE/1
jt5b7RwolWjH9gyyBHZQ6G7yGNYWoxTgeR1MiPH/crQhnsZAVQ3QvfBkm/mQ
O7rHYHS1P8lUo57HqE2vL0H2nFWqBdkXbqNra566MmPtLEt89MTq4NNtqojU
dnMfJaZI2vyoD1beOGe9eEG6zQAw3LiHUD/z6tnjE2wSFLyfZm0/gVJM99Qf
zFaSCxoh0FD6YzMGEEKxo70iGDIUOR+R7aAkMY/OuxikbCvRwkD56NeWaGH1
xC5Ov+NVwhGZFBZqh0oVjdaZMpXdxE4su57kF2Eb3pZ6d3P5HKn9NELsB1hQ
64yMHNqrJ9Zq1r6rvHe1XYOwSEFUOJlELzx2kRqeP/LvsXfpC6eveSlU1B1q
k+/jIRAKyAJRAanvBT1IzMpztH51Q8uUtDdsT7odOWoUq4Mc0NXzCRJuVsvZ
9oQ/JMLRFF4hL5XqU7ml2YjVp8nOKRsTX9UudVKNo8uUmBWKlFfGn2BrK5xz
Eu14hGZiCEU2WPR0FDHIoChNyalmYDHh+uI7id4qh680icwIT3/vFJ0XP6JW
S9/s+f0++YvuDLQLD7LcoSfHWO+aVIxU/njHpxOy0JZ0v1CvoSlKYoLRpbrY
HV3rK+BxYWnnBD6WKm3PCcsUhBIkSq+gJEF5fnRJQ0QfhAeKaZsJIVodkYjd
BNKXBLT+NGMWNfUTEldOV7cBjLwsWThhzH3C0iYzAfiEUAUZkaCm0OeoxRlB
yr5quao72dG1jm7cioFkml9KbPVxGEu4r5VxrWSlotlAKZIu2Qs/MslhNtJ4
uDoHVQUBV9igHlUuk1PzoFU3RIMJFK/ttBEh2IH+iE699nq2NuPcBx1QLfqB
GZkhSXs7dq27V0cdzyhB2wiVypMCQhXw6paL+qayNsw0FM3YY5fxNzLDXaA7
Cx7n5snUfAxTXLcYio+6FMgNrhTA6hM9joTqhkFE0APhW6arFnAtFbq8a0/B
w7g9gVt3QLaM8hU4myoUEV0rqLzl6fraqbqngzt+yNmSLxw6KpLUHy0TX5b4
WsoxrGBLy1ZmXk1jSaLKW/rkELSWIvoEti2gq8BM/PjgDhzJAYG9CSczoZYO
w97Pg5iCITgBwkwgZKoemA3uHJTfnoezNyOd8mVbiU2pBK5OFmKeIw0ANJn1
lZOn7NhC7/SKiEIvAHqrfERCKeGs/quEaPKFE3Zzn5EZipIWonSLJhiIiD2M
vbUWAUN2hIEB5YNxbhnHmJGf5efMMAjgJg6n0gJS7GnuHHaKdXVKiVt6a7PQ
Qm/byysCBt8r83zdwaltntEr/aKrRGu4BYPqmzW3XiX1tcF07Oi/DiyKGxUc
j93fKWWrDTXmUGwp7kXEeJjCJXyuLDCVhDr1r/CTSqxnybD9OkAm/cN9hTK0
Q5szoOv+VWW1KW1FhNWM+YijBJ7Jojvh0ChRJk+AU8csgABV8EXySAuN6ttv
tMZ3IbEMQEbIbwJOQo6koFeWD5kBv2pq0W7QxVxEoegtXEu00UHQ0QRCEEeS
pe1EP+ojBhrHppTs/ngyr89eXH4sTIgjWYMPsX0dpIz0oZTEObwQJENVB7cC
vOKdoesrSA5QF1OXxYoOUsADYM4xFy3qTFTRV6N1OoBENRWPq1PA45ouQewj
yCfygNKf7fYLC10sjSHhP69O2DNWSXsZh2az3ch7F6/b299pN8vY2taoS/U6
B9tubjf9VCcn8g/4yGrApZdy509+J0Lxce2i6ylpV0fjgth5PK9Ogl9830fi
52gw3ngMOrRW0B7AItpn0OeV7Eu015+SC3qqXBRDTU4Q/t3xhidcy5tGb9tO
/whP3uUtkgynKps0CMIZD7QIK9TUoj6whNiefTut9GRW5u1q8PNj8Z07tsns
dUHAKh2H0WXMCP7jRL9YEBWu4vioO94k5hrqmatvtC5s2zoRTJzME5DtmXvI
Kck5JwJyHHgTSN4+Am6it2c6oNhUOs9mnUxuqpU14hFi5X96kLJAPCrpfjUc
wrrB4tq5bCreYfcUCJssLPbARt3LvVpilQR4s6bnpZA9QpTD3+QuKpGQZpka
EaI0Oyp1zCQIm6bBEPYerThxLvcWsbNFznLAYCQp0rQI+dkmdAFuTzkKDC8g
X6uTGaDtIZc7qCLJ+NapxdPvyu9JA2bVavvtL2x8TVGDOsAzokUC59YlzeN7
eHQnIILIdRiBIbB4QhsrbtDY2NRA+CZOm6wjk6BnauMrYJM+mfrM+eL9zRdT
jcbdO12MMy8/FvRJedSnnRfrb2rv2fJG8Gw0P4i5wb/LtAmjJ/8Wz06pv0ti
MMnl8+rQjQPA1N4zy+cq3zmZ7peYavw5Mjyepi7G5sgvI5aHLGshsZGctQRQ
76WPvBvlppdl7RYjmsW6XsfyvogfqM7M9M47jLFzt3eki9vxGRHOri0dTf2A
kwJ/OMYo6EKohQL4dtKF2AN+7URzec6M7yCumc294ydmDXzv7CeHO62G6Iez
fcdd+BKn+LIHUntdcHIG1s2mXcnjViS/wT5c0zJc1Ini/fC1DHpLYPWlUvc2
g5hs09YLH63RBolyR6m3QEUbNrvnL6gf/M7Rz0wVCgOTwezLESuuE1ynwyIp
S/dfCtHz0M4YdTJ8n8xIYKBC72MLbZhdniOsbr4M8kfU0mqX1PAcGS61lcUW
clF4iVN52FSKSMukLe87h5vswT9cWXqwBklYntwbHGLwpl69HXAX/byL0Iqv
YnMjKwhV99ehYQezvy0NodgMZ+dO9uVGvbW/b/5MnSGQkAqND5nVTGZILh3a
Ky/Gt7Tt096zWurSUhoeG47cNdD4tDeCKscG/+ggV4+wLx3JaacKrViv7Mvw
h2XwVvdybM4bbyJpdb86xiLnPlHpeh6IwvvblroeM2aG3x/9DxFRy5w=
"], {{0,
69}, {2048, 0}}, {0, 255}, ColorFunction -> RGBColor],
BoxForm`ImageTag[
"Byte", ColorSpace -> "RGB", Interleaving -> True, MetaInformation ->
Association[
"XMP" -> Association[
"BasicSchema" ->
Association[
"CreatorTool" -> "Pixelmator 3.5", "ModifyDate" ->
DateObject[{2016, 6, 27},
TimeObject[{9, 6, 41.}, TimeZone -> -4.],
TimeZone -> -4.]]], "Comments" ->
Association[
"XML:com.adobe.xmp" ->
" \
2 \
5 \
72 \
1 \
72 \
2048 \
1 \
69 \
2016:06:27 09:06:41 \
Pixelmator 3.5 \
"]]], Selectable -> False], DefaultBaseStyle ->
"ImageGraphics", ImageSize -> Magnification[1],
ImageSizeRaw -> {2048, 69}, PlotRange -> {{0, 2048}, {0, 69}}]], "",
PageWidth -> Infinity, CellMargins -> 0, CellFrameMargins -> 0,
CellChangeTimes -> {{3.544379162237352*^9, 3.544379175555642*^9},
3.574009622854604*^9, 3.5740096771925993`*^9, {3.581868126615425*^9,
3.581868137389792*^9}, 3.6119448864400587`*^9, 3.644332879574626*^9,
3.67602184800485*^9, 3.6760221842131643`*^9, {3.676022245795371*^9,
3.6760222459531*^9}}, Magnification -> 1.],
Cell[
CellGroupData[{
Cell[
BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Evaluate", " ", "the", " ", "following", " ", "code", " ",
"to", " ", "copy", " ", "the", " ", "banner", " ", "artwork",
" ", "placed", " ", "above", " ", "into", " ", "the", " ",
"proper", " ", "locations", " ", "for", " ", "Working", " ",
"and", " ", "SlideShow", " ",
RowBox[{"environments", ":"}]}], " ", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"SelectionMove", "[",
RowBox[{
RowBox[{"SelectedNotebook", "[", "]"}], ",", "Previous",
",", "Cell", ",", "2"}], "]"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"celldata", "=",
RowBox[{"NotebookRead", "[",
RowBox[{"SelectedNotebook", "[", "]"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"SelectionMove", "[",
RowBox[{
RowBox[{"SelectedNotebook", "[", "]"}], ",", "Next", ",",
"Cell", ",", "2"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{
RowBox[{"NotebookSelection", "[",
RowBox[{"SelectedNotebook", "[", "]"}], "]"}], ",",
RowBox[{"DockedCells", "\[Rule]",
RowBox[{"{", "celldata", "}"}]}]}], "]"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"SelectionMove", "[",
RowBox[{
RowBox[{"SelectedNotebook", "[", "]"}], ",", "Next", ",",
"Cell", ",", "3"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{
RowBox[{"NotebookSelection", "[",
RowBox[{"SelectedNotebook", "[", "]"}], "]"}], ",",
RowBox[{"DockedCells", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FEPrivate`FrontEndResource", "[",
RowBox[{"\"FEExpressions\"", ",",
"\"SlideshowToolbar\""}], "]"}], ",", "celldata"}],
"}"}]}]}], "]"}], ";"}]}]}]], "Input",
CellChangeTimes -> {{3.575758860585256*^9, 3.575758891310994*^9}, {
3.575758933293943*^9, 3.5757589725405283`*^9}, {
3.5757592530750093`*^9, 3.575759371153764*^9}}],
Cell[
StyleData[All, "Working"], DockedCells -> {
Cell[
BoxData[
GraphicsBox[
TagBox[
RasterBox[CompressedData["
1:eJzsve+zbOlVHkYlX/Ix/0KqTnfvTs7p3nt3H82MpJkR0swIIc0wM0LSCBkq
EpABXPzQj9SM7CIEEUkkRjYCOWUgYFEWchWWnMKJFKoCJCAbykWY2DgpjV0O
VZZSVFIBOx+cib8l3b33Ws/zrLX2Pn3vjKR7NZfanOqz+93vu9aznvWs9b77
3NG/974fffo/+re+5Vu+5YP/zuHH0+997ls/8IH3fvjt/+7hl3f8yAd/8Nkf
+f7ve8uPfOj7n/3+D9z/vn/7cPPRw/9/y2Ho8fN6d30HXv/+KzRm+nrNN9zH
O/l6edjeu77G1/4bbcDtXnO8umud+jrhc6dd58TrXky/sfjfu+5dt3q9unl1
swLP4nM3Cfi969517/rmuV41W9qXWaFe3QXuVXV9E5XjV01237vOu76JuH3v
ehVf37hyfC+DvnmvO6Ncns3trxkV7wwc7hQz7l1323Vvs3bvukOus6h4T+he
Rdc3fQN5Gw5+02Nyh1z3cL533THXHVz1vukbyNtw8BuAyR3MkFu5bk11v+m5
d2vXNwkHXs3Xva7j3vWNvm6SkTtJdV/d+RIjdceicccadjsW3kn8v3fdu6av
O6MhvClf7lhxmDfsNs2+Y9XjZsO+hnQ6C8w7Frp716viujPk9Bty3bGpN2/Y
HWv23XjdA/MOvV5xXXoVC929695177p33bvuXS/voi3t/viznxm8b3zYcPX6
6+66oXmaPENPCx1+Ysw+jGzUkiZ/e/N1ozvF0s3xV7tzME+8iEaqUzSsv1ag
9uviV7kfPTrNYJPs4yO9PtUnw3r6YN82Yf5+4pGA/yyADU07EZTknXMgzcyg
nRdinzA8pYD3AWeGS8icvp2jCj1YsXd2wOT8gsk+ZEE0oB/WCvlYolr9WufX
PhJjYt2zrwJt4cxZsyElyYAa1YZH+k3OiDDb1FV+G9jbJw3EU3tJvRjHGTGh
ZJ+Jfj1bkVZTfpFV+zThaEnDnhq2jfiOaZlpN8tLFbWmfDZIdJ9+LfJrPuP2
BtStPNgn2/pMyCTys/XUPxBpmUs5LhPf9qHYKSH7qQnJQorvZKT6obTtQ4ql
p/asJ3Gq3ok3Af40Ys7YG+y8Ae0b4+Jzch3ZN2m5Sfnq1evA2GxSSPNJ5aHO
RFRUdJWqGJkxmYDxWQ3uVJqUqNKi082b+xJtmKYT3Swt2acZ9nGSG7yQTo+b
2IoqN1Tzs1uXmN3TDfMs5qENgM1VnzOt2NH4vDTP3Ke8Lsye1MDmJgzPgG5f
FF9fjulXVd7GbOC6c8OKvlaf9kF1b1lge9ZGZgr5YZXJbycRGGy++Sm7WTT/
5W4u+yu1Jg24tb4xoVRKSlmO+Stq/teFvhWGNU7veodSuj9RWCMaCqyt0uSv
ZmhgtG9KS24F5CY2HueRJMViZP75S/enXQbJ9U3wiuM3hSbWvnn73aQpfzk6
TT/x+K4GsNj5ntUQ3qjDe9h8FuBnh8YtucHa6YbzNkyal3FJ5Ov1WWzZE7vq
RQfS5n1KrBc3+VjIfh+kXiyvSsAMpb3WnNG+FjdzLtQd1C2ctxST7BGsLEQ3
t0/TRSShx5vTDOnEBkEb+FveLSKmk6qbrvIU4jbXFQZWW/VUhkJ/ddojT8du
eumw43D0zj63UWOEIbNSOYNViUaq5jeUEr4/2dvcFLKapTdp5tlXxbfk+DR6
zfRgCWiEFFGOgZ6QF9o5pj2y9RXjZ2GRt+KjCNuHw899Y71uxbR9kohqQyGU
IJXwLkLqS8gXtX8i0GMP0zvlyj1RKV+8myDAY8+8t71GgX8TQdj7UUN+hO4w
UXkhd0G8mDheq2bb7QmB0OBR++T+9mS2Gsz4F8Tuo5Ex6EEiQsTFBiMnd8Ja
XBLhx0e0aS8gKiSop+Mg+Cg72Zn6oskYuyBhY5EgsYMas6y/bpThVm6UtwPm
fUo9214144N7miTUa22khavoNnU/DpUw0FK5N1Qbnk2Bndh0ZwpNtFhiFUje
+HFo7Peu15RHjXOmT2zpmZ+0XGh9EyUa+hmrqsFbvBgCMQZ79nHdoEi80eAZ
aKoGExoIM2qpjGoGG7ifj/15nVAgTw8Gpv0CWAEXGKsgnlDaPQ3QkVlOUwia
OAOTYc9ThY1DYxpVslGbqL0sUbR2e2aCaGzS5EBycNJAk6Y6QEF8FkzEu30O
ayNaFNuGImFTpa4kwkKpfODjBQ0clVeuvyHpgBhqhEoQ2Va2JT5DBIq5cep2
gvZ68RUi7WMq5StquAWlr8mcWnQn5LWhlBLZedjvQ8hwgMZ8pvRsjGPxK8/o
VLyaENyEXohgo7RBcYz8uV6zCiW9jSrEmiDsQvfl9lhhLXoVtoceNDL3nCZl
VdqDDMIEEKw+WOih88Ur2lzIepCNwnqdeKh1fByp5C/p2u/D+1xhUYAOJSnS
oNglQYIiho3yWbnEg/kQjFRRAw2B5V5IxktnkkjFYmtltNj47MkpJT+K4HWK
iK4SI26Z2/ufmuw5a0p6rDlDRSKSeX2h/EwP7aI5rUJnkl+4BFJV1VA+7AuJ
E5stRuH1dOhI899NVcTzQMiGKLgQ2g9bJad8U8ZuvImst3XpM0+emr3MQCmp
ueJznSoYSIHDHwnUrR0TMncmyClt5yb3oWph6NVDNDUZqz9Cy/xJUmnZzXPG
NsYFmXwnjgnNopiAeCEXfBMk1VDTkPaYqcOXfqA4r7AdTSCGFh0jKkhSNQ+C
rZkt/Ad6DT+1s31B+IMi3fU0Aiybpz2PetGMXgMoyRcOR++L0jxMudytJUJS
00I6wLD0ajaXWpoN/VLPT9WrU72Wb1GhYhbQsLxZdkZpr5uqdk4laWZifxgQ
21GvG8KnxTElXfBL6CpMLnuPYd9XpPzeqSgOhhZa6lfFhF2gt7Sy7F0TQz+p
dalDy/wM0kpp22u2BoHNdUdoOcopq1+ALm42g4aLzVIv1jFSoSQlquy8K4ib
LJV6lCGN1DUcUSOlB5CXPhB87Jj6GCzWPQl3OGuVIyCNqdRELyL+lAk71q1Z
J8C6AE4d/3J7zw0S+LlXnPd4yuusBcVSko+YgsGm4VIBQ9dBui06iT5Z/WVC
UkSsIDbkdRMSrQ813SwJADJ/HCsIQmR7+EPZhj01VAUQ9NWD2vuZob0i6a8F
T80dhAArMtW995CTLmk4uerp4d4aVYCpaBnEUPu64diQ/1EDqZacJ9BWnbsC
O6keMLEVe0uNXVpI2h7EAm08J0hPVnnoYczeTRozKOxt+Qi9N697hzqfbu0p
r6k3pqhBNPQog16Q+aLUPyCCIlaiCfTgMCxUk7LnN48gra6TOLHRZGmybsTo
TPQMeDFBQkRiKJFFArKpnBHlxsdVKxSgPTztHca9PusyogLF+mMJgi0Ylxin
d08yQnIa3TQzYp3yr5Q/9Licijf4gCQa+KxNBYtn2mugRKJBcqDQYI9tPKAW
6FAi95TUWnBdMUh7LWQi3ajvcrATOk97zSeFeEztmqUcdKS8VS7IhSejb7RF
kGmXQdsrCoo76/ObYayQ4qytgndPjdVTxceijJkhepTLfiF9pP2LlAMN8MEj
KNUznugS1Nzjee4wmbnHkFcGo4/x0N7bg1CeUtMeWiwLomLLIuOF0kubH+aL
MY2vFaon3PTEpNLpiuqZ1Vv64BjZU2NPyLA+eCjHDSNRSzrYBus6XBCQRjDk
NomI3dtWAptTFKO88YTlKPpaQz1htSn1afklDqdk0xNRk4IhNYL6sYXsCJdF
SLrPJmcO0upwsuyAkjrIgGjVdnGj3oZLCSRCiMfzu5iD1Q3LSA/Fk11bGKAF
CPzpqVfvIUqU+8i+8FIY8staSprmZGhwJEvVUwSBnGVsuYJHHROp54JOGw3V
zD4n+7X8mruv0ITw5U2jtUnxL/pGhLnjdUp4ZK1tMPSgG4Zq2DdpWbkmGaEj
nVx2WRDQ2I8CSDgkkuz2BJTW6IyV1HFRMOhD2E2AGJiq4WzqyQznITahxDHV
Q3e8cTyFV35sQs2D4dwEeKktbHikOWVxxHaGg8XoWT8j6QCPdhx0KmEi0fum
V8CdYJz4wCRUpaDkAI1qGaLAW+zGWztudwU61EHaQXgfyCSkRXtCUjpDohmq
ufYGPQ0QRnnSoaoy1aXsmgi7lJHBJBoUXKsaUs5M6/ZUj0QGST+5n1T6gbQ5
bfcUZVYVtpD2LzuTIBAAnT8SwfYLPnnxr3G54eTGZmfNDIsbld01jpuIdVpt
qcGQXOPU8z0d1SxUAY6p1IheYkR9BelSr2jvZLyqgSOvqRSagT7OL9WkR6Sc
7cXxPvf83h7Q8S/tztAJM9RNRHhsa+n9BeswVx85rmkcCvhoDJeWdc/eOWII
Vi8BXTudJKPZZtNAxlBY5zPo/hEbYeIbSvmeJNSqBiunyMueGgmXAnNHzqnQ
n3g5gLxANvcKY5BESJA7y/pvubZfi820BUBD4uoaU4xavtAbULffi4UN0l90
0nuPlNp7XlSaOqCqOe6fqV6j+QGraVMfFlWrkkj6ts70AV6TAaoVDWMYy3RU
IdZeSjrSQyaYC6ZU7T2ZlFr6XZyk8as3oUZEqPGwVIq7CYs1Sxy9l/TUI1bg
CGWvWopz0XEjyTx0SKm2hl6R2mmqVt4Kxs2ILArAqfXidwTe20jCAl57iriH
/PJCxhJHa5FEwMEGmJNTfcQTxwIu+z1pC3V6qifA38+ujatePlQfuCiIC+oF
MOcdn2qvKJ6cDVKO0FlH7yLm+JPN4LPvbUkHmJ9+rqj9PHbN2NQgKbgfllYT
K3K8NEBBJE3reG/iSeGHrrwKajT1DFI6qXbLu5VhcO91eU+JAMXwxsAGW/iI
bw2Th0SJCO+KhwRvJNB46+d89kXRS3N5JXlkcHCeaU6hh8Fmag8O9Dyet2ws
LM5ATkwHea8PUkUIFQeS69HZo6BDsfcUL4k4HkQ5Q5U3AQwh5hoHzgBqyyOW
a48ONMR1eyeMAsJADIlJbrJWM4BcN318IXqyFUX1uXZqGfiiDF7XvHwQ1U3e
iVoQCsvEhn5VlQ7ssk2f5ZR7gXNLUxjnLUmoNwbIBZULHU9NAvFQwk2yRm56
fXRkXIi8yhP9LLjUVHAguI3Bh+h70Eaa09nLveKeoubkQYp5VpImXDeEpDdF
WgFBbBNJbn6oceXGTIqFJF3jrSlYeg2ERU5NRtBlUe1TQlILRAoJPHlrgAiG
hHLV0vJnnZsfhlgtQ1vYw6Q18QHNhos/+oe9mIpSqI0KeHUdGB6qm4fSO0zf
7zRkj3T+sI3UlVsFjKSqhLYhAO7s4g7H2wCuktQJUOFwBfaOAkrOZZRFGEXB
Txuo/+EK21OkDH9iDpmqDVLD/PF64VaZDY4hGZyAMpKLctKpQpDBxlbnhrYB
S9Gaui6BtNY/hJLkaky9PWe0Z4EVPgAI5fEsQPfVU055rvU8myvJNaaVbtDb
CXx2PlCwwAT3C3thNDCmLdoPMJ6NRxlzmgr1Dm/o8Mk2x4QSnMouFRcoz7Uw
JGz9rCIT/n4fIbBugZsEkly/w+1u+FZbRy/EXsssm/ZCDFbmnQduT+HbI+5o
J6KiOsKiDz1CzCLJuwaLBbVkWUu9MsbStqddOYuhm+fR5M1LEGQQnoQReUTd
nZY8rkSkdbZvIoJR3EnEXMnJOwiCF7UYDq7OjoPXKXqQ23Wq5jQA8usBZS5B
BmFVQ+MhbmRto6u7tpPESan12sR6CNq44jFEO4MI9ZGWZjY6sVH+qCIDf1QB
Ls2uQqJ1zE/3iOII7gnIVhdESbiG7rmyQzBVvnwXDOljAySRrS81+UI5I2RS
607U4m6QZVMoQUmEGkoNeVVieD9CFdx6EpI76rchLNxj+5bHkKHU9lZnF7q+
a+r6XA/REqw95V1O/RHymrnEQeGYhlbNNdx1A6LNskOJs3YS9uSalyRnqSxB
oZHtj6cSdHvUDaQGayD1nPAI/SSyTFGCVFo2sfStqQHzrYcU0J3TwJazGoog
kjJwI924Mb23DbYZhDrZ6mAXi4+mEgwm5Wdtz+US4mB7EI4g7T7WIWrclliv
TrstYlSsyL6PpuaBaN+otWE3xP2GdZJKZg839+rUZHpn5WmOFEZBSUmNaffw
V/pD810lF5FitXGVNuoCMcksqjJOZi0lrq5rB9YElnoDUnIvKKTPAhT4Q3Ty
HaipCkjOPSfflAwiDqBvtDwlL3i3S4YRRFSaqf6SdyCDuQaFd72CInnhJqek
b7TE51rJMeVOQDahVuyu2ZdGHnT0YmPDAAYywCqXIOy5nJykOQQXFQXWPfbo
mi1kq7wBhsC68NI+NBOAqyfKsdWCBsBCcNxI78Gcb2LnDlB4ClBEnCpUenwk
uhTvOmT+tWYEZx82koRJ6FXcPAaBoKP0Z2yJmd4LBfK7eVyI4SO6a7Tu2u/R
rjM8685KxK1YAKJr2/mySqOfpF+v8XPHRpKUWQODZimGjytO0D33lDSEg9iH
ObVnNntE9xQBlvRGv5WOBZ3/3kskpduY5iSJ0h1RKrFKUDGl3JTZqBdFoyIp
TClD8SqEXTaAaMAgoVZwqWhSfvXOVU8cDxzOSdY8m9QCiXjcPoDt5J2fV5DC
myOULHHzfs2Ok1YggtQ3QjG8CRGGoKCgdWR2UUKxL5wa2jEqdc0wK4Uh/f2r
RBJMBRdIflOW5S6I1QkGIB+xo9HyQcleyL6WSGpUGFITQO8YCxfWJnGclU5j
iCexi+O4pvBxG8nK6YnmdY12iKgO1JSq7Atc+zXlJuUItl2OBgF+vVZWiIxo
xwvaaJcFkG0DiD0p7b8a5j+FEuWb8aTiBWPCLh4uX1N2U8MG4ym+uooo2G4v
sYMGclmhRNCGMNYR2l9wGrqdPjMxBxRq1IVGAod6YfujfUPuj5abOnly4fGp
JhP5jpJHAkITeghcq5HLvp2x8Zpf6F56BlDOatBjoJNx1aJ9PYHsN4kerrpo
k5rkuG3lvH5dM7zcjPkW1Z4N6rRP9yVZvEhhmJ85gIrW/JgMat9+bbKsrRGX
++wgkZzk5doFitty2Z57dWaJQ31hdQpkJlhkrb0u5OWAKvsO1nITi3MksJoa
A5Vo3k4G/nOHEHpXnNiIMdCrBoD7WntmDkXQI2uVWjp5zMzkFO71eBb8Qc0C
VdgXNc9LLenkTjcOjjMVNWr5oAlugOaCg+CRVbkgNaCdo2896ACHuqk1oWTH
YmARjph6k1bptYok5Y0P1xESSepdea/BcdwhMan/oV2V1QUKKxcUPiayhbw+
Qt/2Lhrck4uScA2Cyml6GrvgEdiIVpzynbNS8DcALQrIxGtajuixo4D2QL7B
QtcSLFcA9Ay4ie2AaxcJqROJybBWexpqJrVYSFEjxLTd9WaMVIX5443WWuNO
shY3BURIavs913YEI0s39vvXZP81z895jQ5QECOJo40VbWGo8tIw5BSygCt1
7JFEiEJJoglJoJyckALY5o3BjpajHQRHEPxkEXBHWDzZKuMqqTE6W+r3pDqQ
UKtmSvStYSZh4Tyl4qV10I8otQaZIimYLIMeceTsdeIwMZakeM1BRAiuhXiQ
U2uTCLR1r/cd5B2HwF2mhly7ZW4MJIJUmKgPvA54UgNJnS2ynjOOBAr1kTcm
lBE7RFBECUQSofZzVOoNmI0WiJjskgKEGO0TQQbqOanT4OxgJNk7UsuUpCgB
aMKpZ+O0RTKCn9rJVKHZBztjgIoP12laaoRUB5wqXpdZpmR1iwUpyXUwSSff
Nwoah8ByHPGSROBWJCqhsJ3uXK/DV7toldvMcEVI3aniK5iXnV1HuJCh0WCU
DLTx5sKEmxLW67U65XVBmkzfYKIEXKthHgLejkHna9bFAgrWpZySTX2zK1Di
ArdON2lfLDrJxFsbf+iNgG8JpRkAzprIzkDyxTipnFG5uw4M0Yzj+5U7+u06
eARuXMucqb8ynCULIg933IXKWrFcShKJtq9Vxxgo1lvvfGI65KhJu6vG4LM8
QptNcRBNuFdqweFayMwql28GZzW4IgIx1tfr9JWZkalyveZve7RG0Tbf7ITS
nOoXkYTaQuIb51ds74ODrsycKbGXQ59cWsU76NERmnad1l1bMRWW7hKqO/5V
IstyKvd32eUgvCyD1wwCS5ZqS9LAcSRSY21ee3VjMJEvQbQFFpXucUwsKOyL
7+OwVUyOa/rEsEZNjsTjWMfmM4TD9p7x27XMby4UVdWFt14Cnblxb00EQwjA
TOJkaked1Wxhw9/m3I+KlJoQHc9pFR4kjiEj1mkSopx0MqNHRYMn5X6t6bOe
MEA6t8CQ6vKGjbkqUbYw8beaO3u0ELviW+ZwBj8gjG07G5D3kujwk7UIE+/B
IxSwM+3lY+xSO1ozRKOpPNwj43bVKpTvkFByJI8/IXZdVWE7SeAc0fwVnSzO
i4rxa84C8d0PMRSQquLXPjJbdmIJziVUHwK3Y4xUtRiHPD7IAgBUTAJnGnJB
o3+tY8KWP3YLsu4u2u/who1DBlbMA2JRM5mN3ukVYE6sMtrj9IiSaGcdabut
IuDIRBxwNqgpT1HjATWjUr5UCzGjSI05KQSEIgTXeUIrQPqmNQXI94PALW73
MlzsLJS2wZ3A2Mh/j05DmcVeuwE4W/AoVAcglLNBrPa0kNmJv91i77iXtgxN
PUMgZIy+YhXIrAlly6HNjj0qjLRODLyaOJQoF6KMqOfn8GV6ePLCEYvyOs5M
Wwba1iWomfClcFkGgRLorBzYGe1aC87XtdduWI6yc2yXgFXlD3oyfeVzP33n
wg1npHS2PM4cMhQvWBmxGNm9FRe8r4w9G0+rhwOYQXcHJJX0d2WJnCFHWFJw
EeAMAkvK2uLFKb8uH8Gi12FRZWMMK7/CCOHWYboFcxnEVnQviYDG2PJ6IlLC
mZhxFdPqRAiFtdgS6l7guiJbIYwlyGkhqiYUHadTIWicg5oRzfTJDGuaLCd6
UiotGZD61eIYKtCeU2Z3HQq0HwLIWU2BFQFFpWpNK86ojX47w5CJNLyVKwd9
apIbB0wNrpySQESBusmAqfmDeaVMzfyaXZtxcwqNbE8GecqwUsfynIFFU37N
x2gKimzqFCBTQnEjMW5k13zEp6CbgXcGFjyVjptuNJszemrdAqJdMWEdYtys
deZGN5WlRfN2ptmBEmdygD5Pn06fsfSMSVMgzIAzIx23OsNtm5FXP0ddz4P6
rFyYmvz8p86081bBqd4TTYJWAphHniO856tHfqRE/hycZ0w604UbxwST1smF
GWCngpi5OgMsfk2nfPNQZCNv6TqTw1O/hnSYp/RMLs+vO+XjOQ+mmIaXX3OO
lHy41RXPhH2dbLgl8M+J3dp04xzOzOfX/OozY6bSc+rOjWaEwWW28lezXtei
mkXjRszPTKsbU6CpXKufKl/rzIw/b+mpjC7m3M1BdCNbztax6/mp6r92mHSN
to03vbA7JyXnYcwRnEemjMKtLl1ZHs/Pb3XaPGxKAOe/vdWFbonYUwNmxGcK
ihi4mzYyt0T+CbiK9xG3cZW6MY/zOWCekya1p0mmZqadWuj2AAlQnE2qszrt
M7/KNsysPp+Y2YV1mnPazXhcNsXDcpUZpxqL8vkxmufb/KI3TjuT0bdk2zxt
5lHKGnKjcKWrONlI/KnfbudFZZLptiFPMm+wLXRr+XKj/J4j12UspoaVaRL+
JiEtXb5MnEzeKSbMUILNmM/fs4XrZhtKbEsWzcd0ApP8h0NnESPO09HP47VL
H/TqjvfXXTn57jTPbu3P6uRrnrML0/qKvO5Ov6oMqy3ZT44/mNf5nLs4SRce
jM8OdwS9jrmxW9Oi46+1a3uCUbxb850uR0EMEJc7u9Mx2juAX2HOvkQAIxpz
vHI0JrGKIJRMOxjpAVLz3PcUcQcZgHeKXseP7/TOTnG2FbvK5g6LKj47NcnN
cIN3fo3emRnFbF2YjcERnqzjTTy1VqsckzWl4ZoMSLmzS4Hbj8ZH24o4rmWe
WklyZEd88uBOPmuKqamayNUSyqU+zEyBlqmMWkB7N1oSOBaTSBCbBap2dlSP
bmr+mKS+XBHWbs+ZlVdfq2Eji7odFGwi+kY24dtUnwAEkrjNVPOjLEQfd+vA
lg5zhh4gzclM20m4CxbtKjqZEHX6a4xOlEEYlirv2ixZM218GKbasQ1B52mV
dD+uONNuqQzCx93IoiKpI6Pm+qKOrj5wuKRELUGq0sor0nkwJw/uY4ORSypm
ywZERkHV10XtzrMRvbt9SbNG+gpBO9g5209aFqs+2FSMyU5ahc7CGoQo0WM9
mfLEw7qs70uWap+mpScqki7BM+idWaZVdYQKU2xpCiRnw93JEpXys5aqazd3
uYkS0bsSMUQ/sXo3BHRdPJJax2SJQxSaDSIqy8VEex8jnj6XQtQlFerIixi1
nXKy6KamTZ0Kt0AUEq3KZWFmWbOK7j1BVPxa3uFwpP587TeL6kz8z61v7Gkt
X27W9ooDUxV5yjV0ZdpDmjRZiKuy1VlVhe+mZlXn03SI0WRc4FHVSHe7SEs2
tSPtmrB2JrJKIapHM/jrpr4o4pBi3lzEls+dXUcLd6IDqY0JpjZp0crm5Gwn
+yOlaG7hJNyR/JGQHpqp9I9t3ljQAZG7HxtUhD6O9NDEqsEjGRAODSdyTjRr
TvKK0U411VDNwttF89yAuFM4g8CRCVU4JDF1Km0Rd2pbDOLg103dGiDyPkfL
WaRlEeVhIc6aTghAwM462yuAU7VYa8o81BMI3/R40Zb4FiY9a5QLHUUhOwFY
WSV0sFpi1J66TvXcWLKsTeiMOZX3HevgNX27FqksVKtYomIC7Vx2zfTef93V
S9jMO1L4pNv9vqlbX3W27LWIluvIQ+3GBZy9ZpypkAS97gkznaY5mTqKelj4
dmcSkQyICHiHM3PII0Kd9lzsF0AIvF13VY8xsTsoJL1LCRXn4UiZVR1oQxDt
DBnuQ1SHO0tJGa+T+NJMj6DAnTuOx9eYsyRqHE8m5XCHAJlTIc0jAr5QEOGd
fB7m6QwHB4Fv1rArNwScnTgI6DQi3R7485goklOUVpS69Dl0WfJU0RLImAh7
WIVw6A3AwBOhma5SHuxHZPbyQXKQT0h20YsYTQpKACdzUu4HSoSgq0lsMK8V
icRWcY7sZPVsSQjxpLU78S7WwZBlO4odz2afS7GKFTmlbRaiSGkm/46CRdkq
mLA7O4wZMBTeqv2Bz5og9EZvJyFGHFOaBD2sEyoHIsCbJSWRMNswWVYC8Vjx
aF3hPGv+PoZGlJNzWXyPOy8ZoBLdqTs5ASUuDhdOaNlT2dlFtZlib8p0ZGWw
X2kWeBuyKUck8wEgqyIF5e8zsbPlQQGygKsg99MGU1yKs2VUrl2COileTGdy
JNhQiIn+Oqcqu7hiiE6YLR7XgFRKG+0uSoODsuXEj8oWmL+TwaJUlQLEbnYf
KSGOTxC7XDE34VOi1/H4NK1wOPOKFuoSw4NTQYKEYwoUR7AjmpX6g0gFL0L0
gxZlEjLOiYoxvjxgV0xbyDUPzmFKVazTqVhbmCe1NO1kPJLr+JNOWhIlAoUK
5Eer1ph/KBA56YJHGYqcfSkclYzINrCMuGR3FjqORakSiZBRkaYYxdpSAjul
+a6iCktIcLYwaG8hU9kRtSTfDLlcPJWGBa7GJZSE83yLOrCPI5HjE+xFfHdW
7/LqpYars52yKFysjcw0SbQQponqFogUyDy3usbR2ZtBLrmRrZXyF5SwvBmk
aU88pHod07OM7y66E2mpEWEzOn0853jGsNw0BZR00xGpwkre0bQxIzQKRfhG
C9cdIZZpLwhruCUpErV6NU/ktEptAnP69dkuThhx1qDkXCsUm81OQsc8CQyM
VHch8p+hJwm5oE04fV7nXGZhCWVFvlJTw+psMMtI1pBc33OjxYAEH6OyhZSp
GM7RkdQIIrDTU1AeXMUlAkIOxiJFGtiRVTl3CnroWkxCSYGdmp2SgitIXSwq
wyRVNUAcQedb6UiZIAEHAZMfidmx7vODCqxQyNNkJ+t6OmQfQ0SCtWhmJjRt
rpnfK0rKYaFZrm6hFdEYhTTkNGEps6n0fUdK/PBtz5Pr+I5iFHIh0ylww+Ky
Ekt0uTC/Jyw97pCuUKeOg1eS8vTZYbRFV6SWK1OqVRh/nBAgrLin7ZUPHfvr
5u1oZkZ1XGsF1zR5O0y4Yg1x5nfkQhBnzguQlnTJfFwN3p3urzCAB+/EGGPL
aPno4OCjal2kyo5WOcWoH31f9ckdTJgsB84ktoQVe+f2rzBs8FqfyjGVmsUl
yUgbbIv1K3ylTMZg0GzVq4OiEoaYqPquUaegimw2E5Jty7nfKXSB0v2YFwiW
pAkzB+nJJGFLVkGTe0uNMTQJBNZPBBfeEVv2igMLO9cFPL4S8Rz5qXKnsQv4
jEwmY3pXJLWW8FlJyZDQr7iWBX52LlM7DHYHe0ZbZl4xZ5xRwQsiuSGzG01l
TDBD4BiJVZFf++IRWitIxMoRy/LVJTzFNeKDpGHKGucbS1/FrpjFUtQS2oNE
2LCVW9gzyBCKldJglT3qCr4leYHgr1gTOPHNYKsmRFpRG2LvGE0O7g7gM4wh
y7rgdcIkqJBZMswfG4OOZNzKFt+nx0MVRuyGR1YduSDpGcRzH+6voE6UU6yu
np4wXgJdsl3SuUczsIIQ0VQCPtAYn51MPbPNs8M577HzJqrfheBSf8IPunIK
01aMPPLRTXJHvMuySsH63CvCnH2B2IY25btWwFzQTa5XKvIr0NhFjxjlqUF5
R7GzrBFrOZG5bsaSBxLCZq+5QAxS3MML8R0OVqXQqLsSw0bNIWKzzIosSLmU
EBB0XCt7Nl6ljOtsJ9aueDw3CWSehpsSSrTRwCHqqpDuSQ0EdtJDGLCCiCXD
HN6YyApXDArRr2PAvY7ncGuxNh9NNiXBwUlSSE4xykFK4ZB0qLPOUgFhFb5S
v1j6VtF3xlC4JA+y3MnSUC04ArHd4/6Q72W82H3LwZVDJ+mwi/Nz7vuzNueq
2xcM7xJW6o4HF2IClDi7AY5kLpck8TFn08g6KiKsWvuAj/W0xG3mYW9TcWnu
nP/BSFe/1AZ3+rPbyVfCHE3DzqVD9cGCqw3DjuJIccmyAxFjG/YCLFGrOBzw
MsEZ0VGL5QLVhV9pBpbxmNGeBVHnJZtOIUDJkyogSdpIaUZwxX3IglWlnt2h
7ViXI8V5beXbV0G1Qsq42cM5A4vwCsHKJwYsd0EcIufRkfKBjIWeyEMMtNBj
t0IBwgkDaMCJT/h0OQQ7/Zbj5V4YzqMBJ8HpdxFkRrIP4HAueH1J2mg44LSH
QykhDrAz7Tk1VEs7H0Dq5wXa2yR4kRluMer3EjhGrIdhfCJB3Z2GT3IHaFAi
IAqFUpnvK/ZRNE1BY6xEoJh4UGBSKgliGhCCrsESvo3tDXWYXKRi2RWd7Dl2
RG+OVL8XGwLzGaIwrFfEhI17hk6bWK0pkm7Gxn5H6rEXtMPqHEfdECkmGpRY
JgYLKYj4OfJ/xWaMwqimdmQwk7lX9Ch9SP2EWquxDCGgjt6qS5FiMnAFLEsM
FSbKC049LxOS0VYFIPU+zKwVPAVwxHRvZBZZXpGz3qtwUFz9bFfFeqXbQGZd
DVRGUiYUA1j6pFiYeb5Xgj2acVak9OQHdvJyfmcoUuQsOCAqh/wylMhHxk1v
2q6E9XzgJJ9hsqfdziXOPnte4FmjGUXcp9JY01GVWEhb+D0b3NCiVPiUcr3E
wmWByDPGUU4URdmo5+GmxS0JBc7BDFLWu6e2ydVEaDSyXIUjmR1eb2ayAjg+
EMO9ZsEeUPTkFB/34SlNMb76+qbrFXgSCkQM7lDOwiRx5lW/Rwrw2z3pAz1r
9kRmUaGVrk75FckmHQjGh9YC/PEeL82DGiGh5BpNxY6jSYceoiEmAuFsympr
T4Z10MyVWOt5qhiWsbaA4lzX+hBZupN1hdU9T7WL4e7jWuap98w+UmLKWUAp
E0RAgiWvFK3KGCXoPS8ZQF1WwHYXjAkerTSmJKGs7XvXYSEelTOW2ZAmIkQs
zhSCVS/zC2deOUyUt0j8AhYUViIz49lT0EMTGLqLfqcE29fe9ZknpN5if2oh
bIxWW4eR+qJuR0oCXW3kVDOET0sevt271PjBXWp+tC5IMTVjuLtDxRczwldS
xLmTZL9ID8nN5EVAbGKMkpaeCrtXMmOlqxfVmSJon9UFxJppz+Ub+auV3Yzx
Fp12KFTiSanQJ7ipOI9dKdtTTilpQ6Xow31rzBLZghpIE2JJh8TvPE9139ED
ENUci5f7SMfgXmSrYO0bNdifpa6SNXA0LKO0Sh88EbyfkXrnykaWe1hXsSsw
S/ospzZA/5yAU28lEfQ2qZBiDXoqc84rPgUSbtBBVhJM0xOaFj2etI4hTZTJ
0tZKxyj2c6Xe+1m9UEsiqGakEFOqhld4+ZCWGaV9CFSOIo5VtO/i9KGXUPKK
ECuSSVo4AiwrRUYylNWYzkZC+ZAutI9lSA0YmV/ySpkDCsVKx9sN6dy0ewyW
d9IhEIEDIGyqsoLmN+QhYhq11G1ap8Eqt4rQUU6NGGpQYtO1DxIH36nHEz3k
vKj3NePJRtgOjDIuj0fbahj14NSf8oVc8L27YxpA9/qp1gicZ7lrOvFOPd2X
n80A+tatNcUO/QZ1TbEzWRXrihqznq96dmSvBSW4s2cmc7J4IZDeyc49tJcL
lNDeTN7wxixmf1ed8HlwZMWcBML7MJIKQWwbNDTqvhCbxJyaJctHMR59AnMG
fR1TZU99hdPMMUHWiwsSYjSEoWS7vwzOyl404yi1NzB52lBAnR6cFOFwpqog
iFpPBMBNSSjur7jJX/kBPmUlIWNUDEcZwVSTd2pI9v6spwOdPYbHd/Q4b8Ry
QSHaWAmjXsulngs6dyOhoPgZEWzTBiy+bSFMoBuaJpJ9OLfH+HyYww3A3mO0
6o20/IrBZhi/7ckv7ZxXqi0aEapxPUdNIKJJCgUws1XlpIrRGZESPhcsjrJ2
DtOXRWQl4GMSFPSJdYO2046Abwo+Kp7FSFk9sIW8y5kSHpyqeuE8J7uAM/y0
Oj/YqEclLCs1b8KXAvYMAkLW6fu7ND7TIC5RNjwJigq6hAw1bBmTuNsdXdjH
0MeCyDKb5lRaijL7YOkWdO98E86ramQR6F4eJDUjbkwQaeLDvlFfyKM6N/0r
Jcm+MKyiSohvotluIkE0WehzY+mjj+yDzVVC8beF/dmGhmhsBzWFPK4StZR1
YeebICpPqieQVOpOe0rFLn/L1IrbliL6ybC+GDCVAgXJQ1pNOxuCaz+jUzlB
Aq/K4N4Y90noqk3HLNkKGxJ65UK6beFh/Q3zTyxxZ2EyrhirP58H1s86dRsj
5CQZqgYgmDSH80RqpDm1RZwYVsR3emZ9CscI02hMBnSVfo0mpUKzglOTILgO
l1RMN/ez305CMUWhHNYZdhU4lIc2s7bxDtEZWIYprBVwnnLQDSvOftkkZXs2
O8arRxMuXKpQXampBTi6V3VOckrOGKbfaumfOBu0Ab5512/7YjuQfMxVO4Ow
D7BXAbLNlAObHNc4BtxUJNNfMpTpz7MVYRqnqqylc9cym6b6W+JAOgyv4pK1
gozn1/d1jpdpy1EoyZOHRfwpQ2vQZvAsQ1AQRvKlqRxZxfZvn3HO/mJFP6Qy
jgX3wwxljGDt9EY7YJVJWNrpD87Ey5lAzAcyTeXXrCOl5ZM8KaLZF47oG94C
gRx6cqRmFENKTBh1jJEJ8DZkavZl6tB71YlKRDzDCVJ8M2Lz9MlHdpxTeGKD
H6C7MUnrEFd/s1Fm5Y2hn4qjRyeHu/xZBdeRrLckM3xWqItpRU/6OCyxt7pZ
NXUlSlN3YnTk35iUJukrjIpRaYl9sC3BGN6wVNSd3S/QZSdaE110sLPkW6af
LF0fUu3DbHnRVWHnZJiqqz62DSlcuKCn4lVysTgXTU5cZYIeU1aNMU2+nCav
N5VjEFOsg7PB4DDSqVXODxz62vi45UycjO6jA9cXuzx5dZQ3E/2pb0s1aDrp
ItIj8QBtvN/2qzbM1jfHa/jWbrb+VN+0Pmcf8ihdPZBva54UkLan1dvxKV8d
P91gHpMjyP5i9T5n0CpZIla1hcFs3nFAq4smIxVDMqMVA1Y0PvnSawr07tGq
pZEUKQ03xaIg2Ih5sMpvlrHjYWZ2b3b2ZmG/cjqlFBZT252PHCYcv2p1IYa0
+kxw9b76igCZSqJABro/INyzzTEESi1OgSgCIRfcZqIoZU1v2PZTFnLmrtoA
rAxjHCSzykBLQPujUDDt290UqkIk4M9sFCpWlrvXRZ76bIT/zgOkmEBJAg7k
3bg6zxyxDfRL35Y4MxWbNKwKYi/uI5VGwJlU2SO2BOC3AXDBrWl7nlDw9Efg
+xBKH+lOkTFtHyFqodLDcjFH2gRvFsA2I3CqXCrmPHkzDkixYDFvDRPKwZVl
B2mp8KppGcki9BA0xNRkbSht9C05Rb7QujPzV7XjzsCkFVkbBByhzLil1GiM
vcGLFa/bSk5VM5TP9k7aAFSYrcxWlKo25ld5NWnaAKzCQqSi4DYJB8zTWvVv
UUCVRaebreAGErY9i4nrlQ1zbe+1fytE0nju3aOHL3A+uUDgN4G9LRoDcDJX
fG3AproFhzp/5l+zhYwM5WCSu7ZftZFXHFP2DiQf/cq1W5rwJlvF91sLJWDs
2WZCOMaiofgi4pb1xiVqzMbgUjva9gICZbRZYnrlLGo1ZVqysOgqQ46f+MxN
UVZCImoIRJxcmytfgr3gB9lmjb7YGRO2jVahM2x7GVy3E9xEVakkmMcwUe7H
mhLuc3ZweZJ8YWWwPkqkQ2cml8nBuOtECoSIo+K0MeNyoq0UrkYt1CzwpiI2
MCIRslbdxAozqXctgzV2qm20f5XyXRaCYZHSKTuy2aAEt3ON+kVmU6vPCpNZ
LW1AH6BmthDrcmM50RmCKnEHt2IeYmMSWzImzyq6jwBVgVbfy/SHO711ODpV
630Chx7hJm70lQSRp2owGphWlYT4xiU7Ozt/NcXqIKf/KtkK6ZYoNK2o6Eqi
qVEOIWgFNEA3sSuMBzt0aJCbtCCV+XKvE/hiMPMkNjMp7uZ4VDDp7mKnJ/tu
gigfZWCLl5IUzSGTUE/VvNEikMNInbABvYPExaMtkSA9ZCAXeqcQdpf8bEyE
6QM0SpCC0qmF8yRVGDE5CM8E8CVaGal+SeubidTog8YWTBthJz7nZolpUxZ6
8joxNk4CqkSiMisAwuTpYsEcpUqVdyEFahLaFRKkzzbEDQJ/1YlApQpLbAfm
1For/hWL+kZC2XPeCeBBVdrAgZ7u1K2CD4v1Tov+SHuvXGawbyIiqazKjBvM
Vlyg/pm6U9+ywU7svpGnPhJtWM+z0QnVrgkVky2nbZTFGichtH8MBTee365w
PmNbDHlxIOP5bJa3S6MlOLOK2yiY0RJiBEWj4jZ2Ry1MIp4TXEEJ3TCnriHj
u07HJ9HPtj+tWitE6qnH8NA45k6SHt+eNsg0p31udxK7uCPrpSjAI+xBTEz6
RsTTWAGc+8aiQ0cfvPfpG7YWpE2bC0kWZ5cBbmaE2UBp2xZR4FgoelAl7JQh
ej1BIa0aTGWxlbTVk97CAC0ERYj9p1EFORhFycExqPvQjFECRgkNJ1crJF2g
K8sOpz++avgzpuqNOWLnajivbnnmWPRFDCHmPYdj5ZxEyiPfm3EVrumkWlwC
2lEBED7eC4+Cg1B6twnjSeQtCv4IlXujsR/4W2QDDjKnL924FqUTnoIS6CWw
vYV6TxyvgWYtCJN/+lSND06Ba+TA3HM/8RBSw/WIMjGUBhCP/Op6j7g3z+SI
FD7Q46b5YxbfAZisgoOUCx5KUyfSRu8uTFJYxonMPfJOs0wJzwpJkksJRcmF
stVot0k+enHpSZc0v7QwySNi7U4R00TGDHQyjNcNPbFFgq51yk/LlSQKHfr2
tqe0BQMBMm3DJc2JHiASE5LjbmGVQo+uYIfQs8yKRmE74D05X7Lv0w4H7A1w
tVS+PV/UXwSOiaFJBEr451aGoZ0WbgsxuOhwwVKJjocqgYpaBOkvKLjnkd09
gu6BaDR8XG2lbxxJxZnecxybyIReg2uLQlgcosxwq5gGhcfI4tUTIEzCaU5a
Cuj+IhjM4x0c2t17zdKOzm1oAgckvj0d1FMb2aHkMffEkZAy3kV4ba3UT/Yg
lkEQ3s6bBKo7LZIFFYEER0SAhc76K4aURQDGtFziY6JZ2aLZSJpQFBxwmCRB
wdK+YoeMM8d9GEuc5iDl0QobIkR55YpNqYdDM48XE5Jzn7ND2EhpC+URk2KY
dNvF+/fGYQSRJL5ULqUrIFYT7SnL0pF7T3F01kGg4KmwkfKFGhsOGW+Fgshb
fyuQxv2F36dca3QYVBSEdDx7i/6Ol+P22PYayJeGs4POBARezj6Xawfci10L
8J2o2GM6e50hboxHHPJOPYNufFRs+4bAxJaBMOT0LBS1RRJxcKEzImtxHmyx
8dPtMctJb0dlQFYKLdlmqyMsL3KE4o2ZcUbTE7mzg49mpPRvsAHijDSUtsFQ
kjabT1GkRWnUnpDdtDoogb8hoTwN0k31iDD09pKR0cE4S4ReydtPkhFpKUnA
d4KbWeX9lWuF1xQNHDKC+pZISOvwUY/QCiJwbjBtXfkntI52B+4IJd2qdaX1
fOQWRXYu5FTUSVMD7BFICrBusTPKNRQ2cFsoA7R/QNpCQwxApBUOsjjozA0W
TKUuO0Ll22lJ+sZehxBL19fwngg8T8kYSqcppCMTCm7TcuqhUeFCMCLcitnY
jrVs0g5OkfrpGTsfZlIU2l0dRKoFGj7PHetAIMIKTkv67J8NJbiDnAoBknmk
ynhRk5EKgoynHKEVLfGV/9CHXqYlRZLJ1cfGBktPTqWHe2Pc7BLCZonWCDVA
pg3SQY+0+oFLRouaDsPYNuW2RjA9IqqlokFqzLGQ8yUnPELcy+qoKUg9dFaC
ibKinC0op2gCa3jOfV0ru18MdhACyJIXkgKV8FLUeFpPECVnyzmCCKIHg2LI
xr8hO5Gh0DcOxKgkaGUFFk3GgADIwziHkSIdMnlLDuZVOKxTKpQtEQBHWPjw
nxQ1ZwTKUFOdWdFgtYTTgYnXMq+4z+yLiAfJ4gJBJFGFpNwRzSemab+kjqgw
coIHqQnULUSVXkObtZKt3MGWsHvfRebx3zuF5eCOqCVJuh8RQygoJQPOWFHL
kLM0qJM8uGNAuCCSv5odoVLD8d35899hmHi+2FOdOiIliR6UQyomcPhJz/Lx
o8iCZpwLzmlm7p2wuy9VhTPOIA0HbqArZD/4yLI2pkOjaGNjy2Fiy0O+hOog
xXRcq/EjHURtJ8Sjr/hUgeqaW5JgEQXQpygiigZ8bNiXKD6pFRQJygli2KII
Mo2DhRG3hqFrSTAdRlpOSrBkAdnGEIU6GJ4CP3dxNrA3KXN8JOZ11PCQCK0i
E0wN3VoY1lKyUDMWi0KX0LCRyEEuKOFgOb8IAJIp2afEigfAHi8uvpAkmirG
DiHrFAEBxzM0GMALqfFdcIGTCx0UXrN22shxQJkJLSkJhUAOarDX29Ejvcmv
PxKUeSKb3FSmVknXrudAaPpTsEhsm45ORSSzAmN7AbBTWFB6+mgPYy7Kj6Sg
rkx7v04faRltHk8Rl0TGGN16mzzGbPW02tHqnJgkhswoYKWFjEqPIJzj1SqA
XbKWlErgaml+FiJ5M95HGGUJPVUWgylJO8u14FHkD2uCaY6RhAhJCGMJPs4l
m4Pyk+9yEBGUinOn7aNfUTOZQswEAFVQyFsyVrkAQtRMeNREru5kQEfgtztR
GDNY/jjK424mFe0Wa1pgo/tIGk6irU2OQNGzwbTflPsKvipGFBxRpyQIwET3
tqGIaKxDKmGqMI8mJr+EAnrR/UanIptZ7hIr7Fv+ay462k09ZKdG4lkVMbdc
OxZ9j6DSRJSjkpRUN8JL8wsx0OiStvRsDMFLDGds0S2znlBpa8NUu5W+AErv
FFgfsgusNhNsZFKRZCW+qTqF8xbkL2WoaA6TOZuEheSopLM7IRaUSiImXZ5T
HsGfKAg+KCUNPyjvXjUuGcBkCYvYil7E+LEwpICO+3RXvou+iAFBiLSrkarh
bnq90wABW6c3jST6aaarHDFEli9Lje+SE7DLd3bjHVmRxc0mpA80OfI0qdPU
naxj6qAoSVqLQyDaUjwiOEzcN0DOuUJLWQ2Qbw1boKQWdjOrh9pKw7pquYx5
7DnLR8oxEx6FMKU4Dp6ewrSrrJ1ZfRZPC/SyrshT42mJLhNplx+XQLC2cyte
ghNLeTG5pJ4UjonwMWc6T7SpC98u9dcqTfpE4wm/5FdRjGkD0ocu/Spa6jd3
yZ4J3krWlClPStLVib8M47tdnYa1aNwUwdQYJGpNhq+iWbJ2VugyhjFxSg5U
sFeYVOrdpTust9TLsXYt60BnQEqnZvWqm/q1VxviVG7zdLE4A/kz5r+zMMHj
u6ETWPLM+SRBM7oi57SexJamJk/yV6eNpwRJagLOg34S1MswvjBvlgCOUn6w
S3zjm4XKza8S1KOqLHndLmR0AnMilEKPWZIvw/hzSNuJ8Uu0nRWGzL1QKWxm
VLqbOqJlV7evEw/mus+P7KIlAagQ6JnKe0Po53pprfJpU08Bii26TUsFdDe2
GTMY+iN5f9SxqWjLU+3YRZLkxC9EiW1OHJsvanmt4nH1mpGJj3BZnG6B+Kki
fLvJ+XONHoy5uT0rLRnxjynW5kiVUcZCaoDbP6tdZb/BlnR8Ze9qqpzbPCNM
DLUKaddjlUCtbsfVf8k2pM11MHIJ3HZm8004iMsTBTdsfgOjMiBdNGyIYyRe
McyloDoKCF23W9tpsOjbic3IwZggAtOdgOf+VIUNxKtAqPfOlVAvYz8zcYVM
mbJZYVnmx9MVCUOCj4w+p0Y7JzNKISiOhvjCsOyUOVWV7/qSMOktRo0kuc+h
mX4qFjU++Mp8S0V82gC7oyJWC1oQ84kMBUli33XWkU6QnexRpHHKl/l9nDwL
ikZud+O3k7vpqftnYl6YVzMnNTYpFuVyGeFyE1FQbifIhFgUgZuZMDZFCbcJ
lsa6nEMDBJZh/sIwn00ayJoknbVJ0r37+FCqqHCLXO/GeNWtiJi3DLZ5Oc79
UhGpIJ7zraz7MuV+H6PW3XBfe6fUxtScof5BvJOau6SrtnPbTdiPSVZSRA5X
fGRpNxOL/OoCzZZp8nLmccAWX5Uz8K/Z02D2tJH61fbwazc927BiR/fnkMyT
jPNsgV6AK6N3RmimTd16xEsaDPcTRFtYuwzjZ5FkN88MNH97zmyTzm6BbUmV
+fF5FTW7JH8ApCtBTjbYVMa0Oa+3MXBOv/jUlpeb5ORMv7rU4E5EkFecwCRY
m1xIKHVTMyzTz2DbcnJOT7EoiSHi2TARz21twAySFdu7vMqUR7Vh6dvseA3+
tJFTUC/TcpOE4SRi9GrSFozKEp3ZG6LGM5fKcKPOz2My46/OOWezAHheYt7S
/HcUJvN0LScXzpSF6Yxrgks3WBLADGjrhCazo4VVV5AKolzbAu0pteenbGS2
qouLVvX9bA7D94lHumJAEs/yw402zCBGj3fLbVdHbduFyJZxrBNh2001rucI
5nIismmVNGBbYKXzF+3ubPi6oNszjxuwk13WDAhZ6nMTsoyxO4v85ybvhEpM
LcewVHk0N8OE/Td0O1PpULs2qxsz1NJQFsiUNi9b2UwVxMi9n41Pq8/t6XzM
kqYts3KGJ+dfJQIlE6qInLVxm6XEZN6dE9OUmwD2HAtnQeu4WoWwzufUjf4G
+2dCcE4VmJGvnD435suE8cX2LS+ND5M9/w3iPKPAY3xLwLeF+0sqsjpVxwOK
dbc1CGJqKl7sXWkhh7iSoxqZJS23nFv65uvGQlCHNWB7Xo80Q7nyqcnxKbJn
+qXJdeb50hTDu4lvJ2vBRKynzLgFjSoVKTSZ54jG+eEormkaJ+QnjKk4XOX7
rW1tpoS08GurJbg6TslfVYI2c//M4lizrpCgqQIx3ddN+D7h6azNy1kz8pzu
3QzBphCrRDshNtez2U09xgx1akkWsgs8f6LisHnE8SNZcqxNvtWiJqFb0l5p
ts52S9sUEHSdtYJ6FOZLnyZf+tJbgZ1r2bjE6RIvTo/bV+xpJ9LHgPjn7XBU
1flsEVUCytqzwQC3uTu6QHA5GqtWrFq2DiNj4vCGAqrE26KRti6CNHPbrYQq
3UoDVM65nBt/MttXgdqMqw+OL6Mxbg9zuLMgdoggnfnwt7c0G8d0IM+AEuMZ
c/CM8akAgQmZnxiwNSS3HUE6eCo8FMC3Hfs+Utcu2Q5sx9lCQG/Uh5E8SB9C
dWs/WUA8EbZm4bYLEp2kGO5wmkidtbMasq0Lvox8012qf8XCIt/G88OOI0JS
oEk9xIV0wBVjaYgxhfQmS40xwYHyme3N2pieLq0t3vtQM99xr+g0o7zz7Bsh
4mRZuv3b3rASTfO8XuWII7ncntAxut561g/+agq7C1sJohPYRy5xcNd5KkHE
LDfx+NYGsHhuEZTlmMgMLNeLxBYxpl9KZJnJmEfCtCWTos2dvho2AIn/nGJB
QCxb72ZMVIXUyN700Eu/eETC7gVo1ARkwVYMRm6alq6EXT4hPF2GHHfpVo9W
6ogjKcTejjm1NDdXGrKo4dvOSk+3hKlSDpZebTFtRw0AK5KvFf5SonPMqbjj
FJ2UNkSKHh/HQF5ArSwOBoIyPIyBCrkQiUSImEOxQUufMFY00uctfPTqttoG
WBhGF1KClOoyiGSASGXhXjolKZf+cJ4TGs7TuqNoe5KSgPicuTFm3vZLCusK
A3or4p27wGPMFwgLLxGX1k5VlB/ud0t9akWZIkG3shK+0vlBCegVirUh5k5t
O7UZA5atQ2S4yU7HY6pdHPVmTEJiZrATLW7oatBxWZMgjR9kJHmtqjs+62nO
6CG4Rj9XCbbctbRlSoss89Km8/QyzoDyDmFpPy2++hZgK/SwXQb1ReyC4yAN
NoSUuGGRpa6JUOqsee5YwMM2mcgjeS2GSZ9jCqPqmj47DmlC7HxZvkSgKCNU
ELRJhu9bllbpxpnbK1QHhn3oYKXNZt9DDTLOE6pbMYwYxT9d5aioQZ+RjGCy
nh4DEJ6QPhCxRU8IUu1/PMtQBXyYSLrLC/Y4oIr93OJx1jQsIXU8BEJSjyiE
JZaIgpcqu7SL81z28q3lqWMjudIh12xHE0JJVYZJqM0MAOksiB2WIB2jk5ya
3oY5eTHOT9vtLfGE/aUeho+JmOGMj4iVcYBaxN4la8WIpXwHCJIynfXq3QqX
E4BaX/pVGk7l7VJ/UvfeMQJL5IgBvtXx0SkuMUUi8LorctOLGhpyD+VWVN1D
4BFfWlohNLFlkoTVTbFQBY0BKiza1LCEyQXCoQ2SyZTUUG0CW/e9868sBZB3
5ohUCpZH2QFpIkCOeMugbTCQTKAR34T5nJWkM5Y1nPi8aeK4bGmhLUXErAVv
qU9batYrJbRSJLYLYi0ab80FZmxHbKHZtuSpqLGzq2Mh1R0uq72nM5MqeacF
FPsI9KgoiBRB6APc3GJC0j1Spy0Onaj59DtQCdYHb6GXRubxp/FkCfUL+7Ix
ef0M3/a53mNTKfS+F0JkjSXO0Eyytmo2vkWMwFWajRo/I4xNjoUi/zu23O0H
RKZRy9ELaZacb9x7gIFcg7YoRuY4NvuQiy385dNFssej4HJHVdJ6VCDjGstH
eVuA7F/Z6YTxyqsAH1B4D9x2RBiipeHppcFjCtcsNCQdPWgMEejgFE8SZNaV
innVasSRfZyAHG6WVvAEh7ptDxfYHYYU6cxnv9zFQU4txL71c/BTQvmpUYo4
VT2UElo9NB5cQCV2XKr4pI53EFRbKehiJwTTb+LtgK5iOEs5c/HxpVF9VOhG
efFHwH9Eh6qJM9ZhNBwoFkuUdZNEa8OogqMxuNU5VzDbJdFSYIt048SR0unS
9zLm4Y3Y0rPVvdtO+kI/0RNiJM5zPP07pP/WefU1j8Xdis/djImH2KoDN5xY
ZYn20roOyB3XBe60IYCQa5cFK0/Ub7v8SoMXaxBJmTceHibQ1bUXM1Oj6yKs
YYrG8/5urD5ecBEgVi0TRoOFytaSww0F9gdN2Fv46/2G9JlUSS2U1LORbjsP
V2SSM4S+RTtH7TTkC/syFnmUDKo1oniSR2gRTU9ScM0FwhCBsKJsJUmQJ853
ag/zofdHiKs0laUh4PUqifu2z/V62sJ4DnGsgwCZTPJm2NHw6MSexJgsmyMO
KLYDvMFhx71t5pZAa7pzoKMtnieXJU6MeIctJ/Ue1hi4PPYURMo11a6VSAHv
m6BCKwoHCTK8wObIxRaMyjLi0gRUfRfm4SNy0s5ri2FQAEh9ZBTvWVZglPGW
yY/UCzsRpw2eXcGMjrFFwTL1kFpmQse7uRW5by2ciz8JIKk6FJiFl2uBRd+l
XmUQWmHi7+JAe3Z+nHcrHnSXMts1RNFjAmxRo4lmznMDH3pLoicburT/wg6u
4zhS3yuJQ8ZYCIj80jxY3ceumQqT5Q7EkPc+1sJRk2A1RSo19d4cBVL+nukK
XfJOnmjjpF1lyXUxQZr0HimkHpuBtgEJgs6NqE7djhZoKisQMacWC2+QPtux
GiWostN4zy+fmcZLk0lyoSlvk9C+Er57FKhVsM5QalMPlz2zuOtrAReVVEgE
NQCGJDVp5KP0qCRKXDGxOni79Ql7moEogW6c2wDNrHhyQkEHB2gTyqrr4umN
qxKSdveoX+C8B3fLbiLB0UQhpui4bGkkgkNKXaizy2UKg13lyEdPf7gmjcqW
fGmtXsuWwb2gbseSjvYC/ZKz0roRMps0Khd3M4CCEjKXaOxQm7NmPwWR9wLU
nDgBzMis58TwrXlBmaI5yDoTjOFcxldoijwu3mO4CFgeWVHwySEv1sdCxpGA
viMgslm2eiKYCFBWSgfo8NKcKy/62uKydCP1YAaBQ3rlKcM1XbJ124OfUBir
HVrEPTfReFjLSqTFU9RCo4CCb2jDuOyGLoWrOUulV0AgBuZ7P2YiQHoIx0Nh
whJcPjjXth1B4T9dz1HaeKQVl4AkVTH6gHyBqab28mD4yvGnMbTiCs6CHqGU
IKbIU+snK7NdiJJT5AKAom6HDZAEV2epLSH5pV7XGjyflnpgkncvFibLYHWr
zpq/3NhI9R9XYfXIQfGuOAZr5S2rVzSC3VKb+QmvI+XQQVX4xwvdqWm4Ulqo
QmEN/Vtcq2fzKkuqp0I7pOVYacDdZuUUPys1kSyPmQupkdyJhAQCUhQsXpQR
Lom8X8Ow1aT9HBcQWGiTe2PphbhNBeWU/Ng1hO0GCSw2/oySp4+0gtmXVkfG
fGHEVADPmZNS1Xsqj2xcznilqUedycuZpxWe8PnkjC/orIJ3yDge0C+FD1+f
WNzF+Ny9mIidvvvgznkrWw8vkZIUgBEq4ScqWAUKgP7Ne8uAm29kWO6WY+tF
1YfO6ikWofMcLV8FF7zCav9AQAn5w9beXbCFytpELGq96Nfhtq44zkAcIGsl
yiJo2g6RdIsme3CLb4tcUCoasAl8NkM/hKmQLMzqmB1yNoLUa2VF3icWNrQx
LkaSAStuwKQNQJOQueHYSgn2oh8aQnDe0QO7SBacISuybaV9OFG6D8HNpGUy
0HJ64gdx6Dlx/EDA2hsRGSJq7w+uZABT1+0JLau3977xZ4VUYtNJhayVky7p
ElCSxqmHVSIUTGlXIXVBZub4euCol0toWHwlr6vSAzu9f6NOEnvJtFmQrKTs
UOPbOAxuMlDajgI6zfpIKrjGpzSdnQGyhpMNrUIhmy+kVQwWzyZf0Z6urQwW
ceiXftSpqWorivKUGPJhFNK2Bc0o6Qrqch+Cg3GhloSJi/iYswxdwNb5Q68D
hpFhBy1wUW+TrQ3tilJOppLmhEVJ0oeUE4fJxeRLBYdyJwqvMJyJh3cfsTEI
dIKpW2OU67zrtsrLdOHg7iiIgJqngUb6O1ZF+VDwxZ2elxDSBr1FAvZoSFqZ
Ni1nUdPikq0iBiZMcjqQjCMXVIpXbHkOt/ZF0iKSOsnhW+hvk7yQ/vRxOZpf
eEXM19RwYR+ZoHtkanikK47uFGLSUsS3XB06k6YgqlKaQSqtIEu2CmkbW1bE
HXWWuyymijTqhAy/BFHywHHlxjB/EoQVCy83aeEDAqe9tLpmSwDk1VZj3TL4
MeLS8gXQIKdR+ug0m53qwuSsKgSIthxCJLyNTc1qJ3VzNJ6bsa6Iac5EVnXa
Eq5YADPaoR+A1CsTIoxZcnvhp9ms5Bd662xot4ic9M5RGWt86FVeWEK5r9Bt
dQjlxK+3fb1S84TrqSfue/+zD37g2QcPP1/JmTe3afkrMri8fxtxyWk15d1N
lrR+50PPf/hXPv2rv/65z3/yU5/6vh/8ofRIy5Pfiu9tMWwThrU3uvNKhSY9
W5n3ys1/1uTm5hCCvzMZgsnr6Wfe/VMf+/ghdofrMMlDj775lbCtvdH3217X
pz24eXD28PjB8cMM07DXLHoFw3TzcmfAFeZ52XPeynVesnzj8PkGx+Jux+du
xORlXWLbrfo7UVAynjUC9XK3rDDl5JvZb2Wtc7x4ZZl284ov/+KSd4sw3lCS
vg7GT6348q2aH3beJK+w7NjO7uuN6q1CN//g6jZUbtNxx/u1Q+C2Zm7p59kz
zGvRTfbcDoZTi97x18sINyXg5kz3p3JW79+6YN7SJnQeitsD5BuoG1/L6yaN
vSlSZ8FyU2Kej+1Un3PrujHpOE3Vzi7xNd4B3ezgyzNgNq3OtOfrkRRStryj
uz3f5wM6ff92z9nOWW5qodtw6lZtu8U27BUg/CtC4zjJ178ufx1WvCubjVsK
5S0MXo3j24KNp+Z2sbHPpw+LTTs2vdvx13HAsQ0eG87FtvuDzz/xx1946o+/
eLze957X8oqH8Q++YXf86jTgN37p272L9rV+45fe4gPkcVv6qSde89ufedu/
euGZf/O/fhdf//x33v6J/+SNi63Wo017unN88PDtYNXhOnw+OQjHfdj4+XQd
H/nCU+NlVsn1BZ9txORgcxypT/3iTz/y1BP3MWhlIzcujaceXUy3i0fQzM4/
+Px3jF5viw7zqcfvY5M+8eNvHOJiS+cz/MNU7a98+lf/7M///P/T/zvc+fXP
fX6RTdp0h29ffPGfGowtIN202DTZsGP03dST5Yebh6++8tWvOicXp4tZOjzy
yU99ajDmeDJ8nAd8/tDzzw9f/dTHPm5kEIRHPE+fD2u5MUqG0Zj5/zustaTZ
DrBMjTws9MXf/M2n3/VuEGDT4UNkY+t2HuZ86aWXcggOCBggPAkYdRiQY3eY
6mDG8TTeoTgNPsA4xm6Dm5FLp58U4hbfkj585GMfH1AN//d7X/rS08+8Wx3P
KXBE4ODyn/1ZYfnh/uk9AokVlm4/9Nwx7ocxo0ZtxWz6aWq2ac2AkagkC+Pg
Vds/8ub73v721+0e2IF+TEie/GR/e//+6adf++a33L/uaFFeXfiMOd/xna/9
D//Cg+39uzjnNpDk+Br3dQ9ff+fTr/2O73hte98urmITLmJRiPMoMu3sPK3Q
lWHEmUOFT3CWEdjwWi2vuKxiQcMm1kqxoIWSdzEWdxk+dzkmYvwCAi5rLRgK
eDdka3AtjkzS2lG5McQkQORggGujyEtTNA2R4A+RYaAWYfU0odY+GrxpIfti
rTdpAUkK/YCeCKDELtCAHKciTlV1wdhGbvNPuQKeRMhWWBqQRJpwI4oqYPEl
DgBPjfjGUUqEEU8H71CRtYULtKmymAEEeoIJoZewAhPAAW6xyIAKN9S7ENY2
WZUTeU6yFpwdwC3wrWWVEC6xwVSFC4akHFmMNOYQIyJOY3QpmqQLZlSWiJyb
UWQ8dwKr24WsWwpyKzgUF6ekTaJ54e0udWuVbhcGnFwT0c4aK6u4zgyKt0DL
JOixVo8PMhkkfK3uHbQIboK1BMWmTbipgxsjm7LRw7cIKwoDQwpYYRKFMR3g
chyFmu6f7FlwxRme9WhCfsfgah0M4eP7qh4Vh4Mxi62GuyC2pJIq0mgbJQWF
Y6MWctA3McvStrEqf7Czndr8pnKTg95WqdHShUcWQv6QgLYJLfJdTRq53Zq8
hHVD7TDvEGUtOikXMhkWrkKx1nfioK0l+wLiieyVkioWlTq0CmWZjhWBiqbU
eqWZnGCUgHP6BBa1o/gkni8AcugEOlEqYMIKn+JI6C2IbzWHKc2dRdhib7RV
c9DY96CWhIyV4DY+Lg/mdE5Rxq+5hfDEpzCJLIM5KC5BbKnyWlkpOIauXgof
iUkIt2PFLV9oNqS3ISg2idhyWpUzyCnaYbmIVQtmBrRJgRchvltrCXhaWMgV
jfWzFR/9xENWF0IuBFtVZkOGI0ip0SYcurwBieKp6ZN7nnxmm3jLILeWcVoE
LaGIeK51JD4+yYa1JWlsFDQKih4zLqKFpexDLRecERvclwaAzsNjYlYntJoF
nHTiheO28FqGwLWwWaQsHFO3JuBjP7PYED1O8/zxF5/yM/nPfvLNvMph2Puf
fdC//VcvPLMgrThVzPaf/87bfcBTj7+GFP748xd/+pFw7J/fArzvPQ84T6gF
bQ/GwLCfe7PICykGjiy2HT8ycx2GjTVr073/2def88hvf+ZtD75hh0p38n1h
qnKYh3EY/JJweAhO1jLmh+u973ntctNJzlq7/gsK4AmHvAWjlNm0v/elL/mJ
8Yeee/5Dz3/48PPweTib/cpXv3o6RpacPdz/8vEMuaUq3HKRGgg/HrmzYpyY
70fuT7/r3TaJzcC99Kb7oxdeGE/gn3vemTzsUPz8/zBm4VukDQFiGX1YZRhp
5//SXw3GDH/BPnWNB9rm3XD+f8AtDDtY4kfxx3N7i7Vt6+S8emFn0YefQwgO
gJ/+iv75g7M/9bGPH0IwvBE4WDiehxvCw7MPPfKYI3mY4fDIMXzPHf8Fgcfu
+37ghxzVwwzD+f+Xj0EZJ6Fa2Xq+Hz54iFl2PDSDwcO6Hzmu++Fh3eGNwMHs
wf2F6wnq2vHzQ48+5iMPbh4tP7Du+eePbwROAB7sH/75A6M0WOLn/wuivRs/
oO3q6n55gVh4PTrB+My7Xvf7f/fJf/lHeNv4lb//zo/+5Uf+g/0OFdYrzqZr
uu5jf/nRP/ndd/j4f/2P3/3Cf/v0e555vWmmX5Lvw7qvfej6pX9yfOptjz/g
c47lgA5SVtvuJ5974z/7nXdwLv+jLz793e95/VKXGJsx05YwD3ekC2/OqZHL
86Bmea5xuSRfIj6BKtK604EJWhdnID67FNyw1lj6+YTB2esqUcTibsTnbsZE
GlfqJ1t5auspQD2JfPbLHLFHcFpl41nuFnhcfYkj2Z2xt1z6vnvQFjSBJsIb
Uhhq7UbM/RE/VcaKZPmWj9raJRSs5XD4VsJbqWURNbNHGx7rdqx1BJfMa+0A
qSG0Lmvjv47gi2tmmHeMC/SNzgqjH6/CGeGw4ChyPGNZWCAWhOGCjLeq6rO1
3m2CQog+IWmZYv2D04bQ2/iiIxoe+jSzc7Ljdb1j8WRxB411tqfwJmFj9tN9
KqBCb7DFrBV+ao0g27BdQquPnSbY7sZQOYOdfmdACXe2wGe5oXCAtyYXnMvc
mm5bZt0yQmc7C3DAGI7dAQHuiUM7Dk/DpTOWGuOlxkUjzjuy1oPFgIi1Hkrn
CbfikBc0YPard92tSRPnSCd4mrWWHeOElL9WEVyNDXY+s/LHneekhHx0YKRi
PqMMcbq5160Gi04htLJwiUR3ilJC9YKUVkNmjsMF57wDSzCyDf64SI0VVg86
KbCcEJK2eIFzNxdOSDPMd9mop0w547C8j5AiReq3pcDR69qFxzrI/oahE0d8
gBPPhcU4QyEGklADCgRnkJ9UjLHDsYmvZRrufGY3Rzs1jlaOQUJOWO1GWmtU
OmhFSFs/BeJC7IXGk8gCREeaXi5bVict1h2ybxuC4qoomeuysLCnlsIBXsga
qi0RmF1AXFhVXL2dxtwxUk1Bb9lZ6rH4kHLa6gQvEOCiyflCtUyzmOUO4DPz
O88Ib6etHRJ5UT2BGJKqhC7LQCZkUAi8xjH/KZTqTueOoL5viDxbawCCyG/J
zkAnaSe8i3AhoqIPbfGyBZGh7ZgHjtsYlqNW/eo8FguGSxQgMIpq8bg6Z4p7
4S0BN65meYo+9TAtqLJVwiBq4pqmj4mY1iYfw+77mAWhuuCQUS0Ako7PRnXJ
K4WIG4fbm0NWXaqMLDLGc784lVD6I6m4iql0bGCDVDpLajuxkQLEamAVkLYV
W444n42TXhlcca8XcODk8mSXiIM2QBux8PJBBKNC7C23Fj5XgJZVF5tfLyhA
z+sIGzAqqod7Qcq88EZ3Y62XbAd0q06qznDxeYs4q0s48r7bcqnkM/Pf/szb
0NGlb08n1Q9QdTte/HbAlxgmOcx2ztH64cHjKwB99mChnP8fT+x1/+7NJwXo
Fs7/bbkzz/+HI/0Fmj2kzwHJJx9/TR5/uAlZFpXuwvn/b33mbWO6UWIOroXX
CoPlVulIYC15P/Kxj/shv4MzDH7okTd/8Td/8/Dtr3z6V+3Z8SfO/ylrFuTg
cMf/1Jxq4nGJw83hgPp0ikvPaqP10COPDbYN5/8ByQ899+HhoPjw86FHH0Ni
bmHnwPPhuP4w0o1BOdiM5/9kP2pT7G91woMBllAtG/azP/+p4dz+9M6iXWiA
WMSGr4Z/43AMwSNvliKyaQ9+DSftHzn+GwfixmmM/6OGp595t0/oOB+idvj2
EEGUAAPty8M/yqCGeaEXxQ5e+7qDSceXCz/4g14FPDru/sFmUicf1h7COlj+
Ry+8cPgcVPfwYWDdYZLh9ZBXwGF+/P2/S6V5J1AHqg9uXmE30bTdz330sf/3
f5lI3v/hO1/38PVIAxPG/QO7/+nvPTWV73/jP38zKxLnrxv21z7y6DD4rY8/
wPeXWOj481f+6lumVvnJ594Ysj7mNc0jh1osF1ugXc7jpz2s/MEXz1lZyHuD
rbNRssMeSVbR7ubMtUKgIey2hcyxuOvwuasxgS8acV2XQUClYMVgWRt1OKmW
W6UfuK8TiXCnRMEAMnZADCy0yJ4NyFehSUHhn9vwwfu6Tn0xgQ0HawiW9Z9u
27ZV9HxDgceDBDGSGCAIeOyspaRjCk4Eo67uy+IkIXzxPtMDX9n2x+GKkE6U
Nhnmx25GuYIhqCldsNbrOH2FnULmpBnsYeVFaZi+4MCpJm9ONy2SCyHg7ZjP
VmSHJj4BTkc99FS33EqCM+WCApBGEZJbumMbWDbYnbVDg5bFine1mXgaSt7t
EieJ564w2GnidKKNma44LOi8YqFR5pMWdra6z4ITcJYs8Jmxe5WNZ6daQdmd
+ls6mugIH9oSbuiwwo9osBln+dKo8XEEDdDPcaesE7qPpmAIN+8aOiGzFrKk
FZJifHGAJCPCTdENFAKNmp9mOLs0d8jIMY+2kfMTtnk3C69z0lEqiSNIijQg
7NT8yJ3EUKxaSmNjDcDWnYrrjouixHdhEsxDjF0IJajP2Yqpfm4DBER4/dyJ
1HUrkpW0pV1uWAyR6ZKndtBHqtsRmGPh8+QNm3099bKivO3YKhjjuHmL6GU0
OS5xjPAKOHKyKpyPpxMhp+xb2lMLVcw76e6MaVtyX7dCwknLd/rMXO3I/agn
6jjJIJ38yFGAWE55KoWyaE4WCZ/cfy6EY8KuRVpaOlK2Vo03BDglWc/Fr2CA
lL+oXcWletIpSoaJhUlJG9juPM/fAmSAryngN3lfs4A9UdW1w291sItVhMtH
ihfUqyyjwSYd2drknUZT1qKcqtTVHaEOTRxJjSifVBMNHDQ+c25ZVOWn6bbk
yBaPF25qHV+aX75DWaSRwezCR40FW7Lg8SSJLAKs2wsdyULhI3mhEE1Hknub
pRGJqI7PAY0Q3LGsyJZfqCirk4oGeMPGQfHXjIhJUYycv6Ye/IkPPOyHUX/8
hafCEoc7fFr1Cz/9yPIKj7/3PQ/ws5j5qv1PaVo/5f7Ej7/x/c++/rOffPOf
/v4709H6acWrrS29/ewnH+Nzb7J5u4xebIeLz/8P9hx+ra7HDjYc3Tw5wuf/
B6t45G+l/2zR8T+/4+AQDv7PHHj84eYyRXZ4JKB6+ocV4tfw61PptcKAQxnH
4cPwB/bj3+FXSxeH2PbH4VXK0HXV8msCI+0xXi+++E8P97/y1a/+2Z/9OX1l
Hwyon/35Tw1/YW7n/+Pjw+XnwIefh5Gld8OHwyqHtQ4rvkjGOGhffvHF0/n/
li3hK7tm5//Ph+X85/BW5fgPE87Iu+Ew/HgSPg7bBjH8pHo3/BwOyQ9LyNJX
PMN2tPAKqw+gvRiDUhSvEDu/8MLokcemqDWMeemllx565NEQXLZ8QZjjw8na
AeFEHol7iONCECiCsqSDo8Mqz//oG4Yc+RdfeueP/dDDr3v4evfA7nve87o/
tBP+v/+5J9etbLs++9ffOnz1P3/h6fd9z+sP49/4yGs+/P5v9X8+8L3f8+AU
Zw4E++hfepMn5tsevz+jNzz4c//ZqGO//befeP7HvvW1D+/ve/3+Qz/8hv/j
H77r35z+ucFbH7+/qBppnkFw5hk4MQ8Ly7Z6apsfL+cM3+Irtu2qGHkbay31
kYEJec67C5+7GpOlzj9jLT5fFWaU47kWLNO6payxqdmYyTyaNj4MnpktenQV
ZkYbM+V4xn8ZJ4kzZPv12uZpGcylA3UlA8rPM1SZmP8seJfRSPsVvm/nYJ8w
IKdYGb5Zw1BYZ6I/DjBWe7gzY6s2Na44t8SsI1M0mIErPRWZOaNg7ixHKmJ7
JTZPgjydmFMuL2h+urOdB2fq5kQSxWDdBOxMydgqCFtPN2dFTaebQjmlcssJ
ka/BuQpjtuVClV9Djkzk79lX7ugWMbIR6ikc5uNePhssKSO+nPLrKkFNv+bE
xLRFdxR0L5YwCtY219/wSOHajTE6oyLPf8saMp8yEY0AKfmShTdOqCKzFKBu
WksNKx2pfBwxnApoclN16So2acFC+ZDq8lRQOHFqmiVtieJphi1yPiag5P5s
KzsPI01SUrrQK7KhaITqLScp2HIC0hD9WlKuIjFyuHNMM9TJkZI2gDf1SHlF
NnjSwkV6EGuNsBRiTuYVpYE5kBWPlwiJmVNmOZDzquX0HwdMJcLEacDUnRAm
7hkYitlYVGpT+R6fvelauuNXYnk1g5SAMhnHYdUOIk2I0rNUQBb5qatYvJZK
uRCysMQMGsuEYRaWGTU4GTNXfXhap1PkZADkpqnmgnuVRs5ssiZa6NwIVZ1h
FoftAAWl81b5sMVnD+jxw1EewyEzxe74IZ/h22zHb/ndwfFo2iLy4MM7Pgk/
fH7vdz0Qep7f0n8dcHrcbD4xM/z9P5wi844uANX8iIEzGJbBvNry+b+9wtg6
uw6O8F/gjwOuYiv4B59/Yhhw+ODjh/8EkBkgq4fz/8N1QJLjMpjxG78U/2yY
cODoY/LhD+Mn2AK/wv3xbPbKV+cx9hTO/ykEJxxefPHFL7/44q98+tOHAd/3
Az8ok5PvXz79M4Ff/9zn7Px/O4bvFPfhHPjw8zDmZMyWk2hpsBzmH14Q4D9o
ozk1nP8b4VHR3JglJ8VpgJ//M520NGyHf5jgzDenAI6nWECJMVz6g36dFhr+
i0anA/bHaEIP7nZJrDCeHH8dQBvgSodOzvzjuvqKZ7Dk+O3g1zFqV2StmWfD
xkP+Q+xUWNjyR5UwUbKGuPibnQH8pZz/j4+jFhyDtTWebL1rJWkd/txou9n3
X/0H7xwO/x9+43447BqCsmq73/v1J4f0+eFnHx6/2rRPPnn/cPOF/+bp7X07
Mnv7+BP3/+t//O7DV3/yu+84vmW42npE3vvdDz7/o2/4xf/i2/g/GVSe/w+z
ve+7R3n54q8+7nwbHPyPf3h8YfHLn3izZZNmHM2zvAKfwzyI1GY7O49UAcdH
xow9yTZ4kUpzPPHwLk4/t0a/s9eSfBGmueBTdtyN+NzFmKQdASlhPBfyya1b
uDLZccdZsorSfFpOmk+xLXT1apXg6TLIep7WUncYNHHtBJf7CymGOMcu8crv
p8J6xatTcHGH27Zg8zbcXG70wRJVcCY5zrhtGATmXkBeGL4UeIMjnCxUNK+C
MdtlIMYmWMi+6yYldbbSA5Q5osDqtoLWcmSU6ss4MuCv7XcIhzaEka72q+Jp
/ZKTZ7hDq6QthrL0aruUm4HD3mn4t2r2IFwFtQDOkBrUkm2XAguLlaVSyDUi
HsmF0mZUGHXEjFmGm0QMMsYZQj0heaq7bBJwFIhkW76SJuvjRZ4m9ZiZWfY+
cdErRl6VJ2dlyNZEoeVVC7g2ND9A4Fgg/alCJUm5Um6ETLki9SMHl9Gd0i8u
ARip1UQzS8cvQ3yZ58FU1wHtz3GScKV1p/R3nEfvMIAb6ntF/bSgeIrZDEtH
I6mNpIlkqICj2yVwYOmgXfFsjANvi0RjlxvdCjFW4guR6soE8GobbQjGewfF
SR04T78useJWxvBgSJltnYJ5RfVs6dsQYs1ZKls0Fem5aLKYRGmixhC2qofp
PIR7DH6RnfuNDRQ+ZMTyyq21YUK2qV5X1dgzJVhbHkRHPm8F21IfSF6WDh0+
OFwTNOAoMwJGuWXM4sRkzkqENUG9CcizVayuSIr0YKJ0rZkufeNBdD1PIQjq
2qRIaoDicbEjI0VhkjBusNgTAqTEQLfALicRqMy2k/lt/NbnvCJwRLrl5Mpn
i7UMqbSdAQ2PMxNCpFCIt+LsVUhM+AIRCzZnqeF8mWFpYqxjyOOj8kc1kL9Q
8l6xTv/IAc30QIMY3PTUqPCqY4GKDhR/lQo6d4lJgtz4LXrOoBglmSXEqgAo
jsc7F76xQt1koWPBOQ3etHxW/+Tjr3GT3v/s68L585/+/jtIeVr+E/2f+MBD
owGb7Sd+/Fv5qcM8JFZIZD4G/9Pff+fg8oV9q3///9jw+AV2ASw+bk/1ysAU
48JsuEALkc7/w+DN9r3fdb+8H9Fu5PD59Q/3/u0v/PQjfGh/AhPhuDCS5PP/
P/j8E1HxrrYHtIvzfxPMC7FkXGI8/0d7oNdme8FqYzDi/H8jvl+QMQu8JpAJ
Dz+/fDr/f+iRR4f/QE1c9AT40+96ZvgW5//aMNs58OeGo+bTP2Fwqvta40H0
8J8SOizK7f3wwc7/KXMBkRR6S5YtmQRyBq2m1wpDKIcQcA0dwzf8OT2niYRD
ODlSEafr8tTI9gtOeYvFYBid/7NScY+3HVLS4IL+HPjj/yKDYhFai9HyQ3Bf
Ov2f0WNEZrD8MM/FZuv5JVJmZpipL7L9C3vvQ+f//hRXfwXZ3LzYtANFP/BD
44vIn3zuTfj2asiR9tvfet/w7S/9FUufq/avf3SUl/d+9+vZ04tBfD717WMK
P3k/mHDV/osvvTOk5HC99fH7obqE3n/9S8e3nP/b//iO9r5+8OLCSsa6a//k
d4+z/aMvPh0Ve5OiYInpWe/z6KKz82j5dnzGQlA85cK1rQMBzpg9/Jkjde5a
wrqLDdy/kG7hrsXnLseEWohRQy58vGmUVY3B1JMBG36KRBiAsEIa+LbcxRVp
y5XDFaTGb4pCYiG4E4CiTm/Uk9HCC8gpNWmYPxVZqjXShsUBasOmJctRFEjt
Q5/DvRwwNJz1QY4p98NKKiGzkyT1CWoDFyMSbUFVGKXlkjKFH9yEYLVs2AUi
tVVHMh9aKNJAjyJSoUmwfLwa05N8p7ZBMpqhC5nYXrALZRUz0C40BBZNXVRi
x6C1F4KGJztlhCzXjjzfJBe4OeGs95+Ygb3ekoIFRbLQc7BiFrSYIfYwremJ
qVnRCHkzgJ9ilbDUfWGvRwstZwPBJAdNtI0DKZsuGEaHJSSIq9PVVpajhjNl
OmdNckFyXFLsIgyjKIA2qHfMzyw1UtqQj4KAPijGBBvkV0wlg13YTZM3Vvg2
CqZGQSIeUdLQb9KzVrmQfZ5lSEZlciHOY3KhN3DRKDkTsi/KqUiZfCg5QIkZ
Hhn3FGzVRpcrpEb4drFBs+d7E2HCpgUCwiV0EZbUWwm61ALtCq5Ke1RskUq8
Yig6wuQLsYTX1YQKCrwpYsHMFNlRMYk1msORySwFpYIIUZNQXsBavTbcbUZF
krZKdY+SJRNvIrn4TqykW4o+TWsxkn7vBNoFhfUCnnKPoemzIXZpptPkKra8
i/GYSrA4ZFoT3aMrteFKB8jIIKdWjpmum1Q6x95mS1rN7CVggwIH+SXtwjkD
F+XQUYcaBO9ClINscgrQ/NJmUHSQC3l+Voygh6Q2VwxaK2ZbJrqnvMuw9FQY
A/lzcUREWrE5wsW8BavJGNU3Ju1mbNiEIVE2lWwDcyIPk7x4xfceMumPoyrl
D6knHS9CLPhX+pCVgS4Sc+pCncYs6fCrVcTIeBYclo4r123NC25FkBpkraLk
W2Df4FArRRInhYyZPxrglagSqCBTpGOQNc9Z1jrQRqalGfg4+niMb/76CTz/
DbydaR+f9b97P92/9vs84fGfDBjTggGHR/gM7ceefd1wijgewU2d/1NPdTHm
0Tjhr9Ejv2aPOCb0E6DxOw47/5fsOFx6/j9urBxYftnx3u+6/wAgXgd8/JEh
msFxx4dP+F//cM9j/L0Dgz+e/xPxxKmr8fT7Q889Ty87JL+CJQNLh4PZiwCv
VUN/xM9v7WBn/PZw8ytf+erh1z964YXTEbGkzDDt8K8Dnn7XM+Hv/53Vfv4/
/IX/YTzlI/LrMP/xPzVz5TZHYg8IJMy9YhoNaPXBpA8SaJ7FPvl4/k8VfCKt
WvqLeuxc5N1TMMz+ccHxT+ixD9U039BaG9znQ3WemdunwWsOsZ/VD/+1qI98
9GNOJ0qN1ng+TjX+Lxd89GO8kFjOmTXSXrqIYfCDjzzqOX5xRef/hTS1cIGv
YYnjf3JthOtnfmL8D3DtX7vPKbzctsN/0udLf+dJn/yf/HdPH+78n//wGSqU
gO6Zd752mPCvfeRRXv0Lf/Px3/+7T/r1z377O8fz/7fdn9X16jXd//3C8d8R
/JWfeMTPQnnAAw/tHvu2+x557DXMRpyScZpb317O43yYmgc95CbS9aK4SXTd
yPzMjUWMr7CFIT13LXwrsXCvq/S5y/C5qzG5kA4ktm3+LKtoFKLpR2CPPRvc
DMgwIPoqPI3c5PuksZv4SIVnq3NiJzKoK6bdbC9YqwMIGmh1eTqVaI+ZLbzg
GTYyIEQtTU7vr8NXiTBpxThnjulkOCpgZXJNIu+cq+gIIdmqi8qGcnVN1TIK
baDoQm8GO0OvHtkbG0Jq2uOD0whf5dzEhCZKOtWG7Lza2oFDmp+3PNIPRIN9
K4oDtDKmaCYn8sssyePDHdlI2h7/os4pPVXQgF6wuI0upNWzGYxwwpwN48dL
HCaBsp34AK/GUX4NulqSJNI4iHNmZjjxwLPju0W3xI4X2rAQ5g8wRniLWgAb
mFTFACRg+qCr4BS6WMuPHS50cg5iBhOHISUtJRzYcSwMQ+z9yU7oSdVLsCDT
riquuEiJQCCIOyQ1QJs+jDZLSYpoRFTr5KWNgJI8MvbC3v3J+Sf+rILn17+1
CJpGiXkxzfbK/nbh5WMjK5YFl1mBP3LQYhGYA8w3YeacC1VPOFGRWceqHAfU
ZV2GnWJVe5HiWKY5/tIDFUF2qV5VWYK0tStAjilQdoBVS+B55+FG7qSnSigu
YHwoaoISMWp8I1zoXpF04k7A84KeyrXygvSKdS86679uCrYstJMMOKgyoFZK
yIiZTHiSDnWWmswojFgXtKH8lWEXhJ5mGdQvMz+KfNpnBfynvirvs3gSDqqc
xBNJ4U3LyIB+8icZU0tDbdAbeJio/ZhSLRBV+ByK/tYL/QQ+041H3IZIhQqK
HVrZasI2zj8bOMS97sQm4eW/YNQB9tc4E8S4KH9uiA9jv1rWBYGiinhb1bIK
9quN2ra5uNwer8OH43W6eWkDLmHDr+lJ+/js1caPqX+GjrgPn30tP5o+/hfs
T5MPC/GB+enfBQxfDdO6zcfPerj9GCvAr1Xn/+Plxl8Og8dpP6vn/yqhG4f9
4hJg/pie/1/QyGFAeEmxsBncBn8JcgBheMoHH7y7MPP4gwN7+OCPH18WgBgb
/+8jHe4LRJejhSEFhmv4i+6XXnppOH9ejJEKxBih86foDNl93yxo5PA5HDW7
R37k/rM///N8njzQbAj0V77y1dM7Av5j+41BvTks4ef/PHiMrxlwmPn01+Y/
f7gjB9pEfjuo1yQlZ+Hg5Tizm4QxxJDDyAff9OiAaqGol3bZs8NsB/ufetcz
zvMkOBv/OfzLCAfW0+SCYse8ZS/kj+qHkZebYCSHmJ+9OL1MMaw83JsLCv0F
gT9Q6/SPFMY7bjmp2QbzX4rXh1+Hfyww/tOPkzotriTueIrwv4jQWaw33SiP
l5u/9cnjP7r5l3/0zMWleD18brr2//njY/r89595Ynh2uWmH/8LPb332CZeU
BSF/dd29dPqfEv6NX37bFKSH64N/8Q1+/j+iBwM2P/oD479KeOKJ+6Eqmr88
myfa4pKCzgRgdbrVeS4FxsCEnEeDLxV14wyLS6om9LmMxTlrhVhc0M0qFncT
Pt8EmAzzj3Ze4pHKl+NX0bbTHcZB0zxYDpeTCORnbYZLoHehT5Eab4YmB1Lj
pg4oXYr742z0c5Gsopl9DOLFscj2W1nfXOgjwETkdONWjT/tQ7AtxzpCSnpl
M2+47owETnQtk2UE83IbiRrMuOQoQO0vop3FryELwhIOMt3k7kuWU/Apyjw/
c6CwZ0MzoPYtLnmVGorcYhVoi27ELq74fImnpoIFyy9lkjQsZ2LKblpUB2y8
u6strDI3wBJXD6uojz6gNHhRBhE1q8w4M0PXXVBwnS3DI0HTyhzx8R6Fiyri
pe+Kw+aUREjSC6TemMXBZdIWbSnhC7KDyb9wsy8Lv5zhTBgoDKt9aghTpigN
vKwkTauIHTWhjsIlla06L2R7aGqwCaCFrp5207F/ZkqzqWqVLxStmkpkGsDb
VS491U+Lcq4mF2GtS7Y/QBQ2CBublgkgboakS/jAjEytOMMV14uN5J0lckCb
6MEIS4IEexah+2L3NSk4f8kqDmv0OkZWJqwDjdQOucDPkvuSfRq7ixQX2HO5
Kch5teVeqAxlhaToP2qE6P+m6u42NB4tmedd5sPFZdKWBOOC57kqeVJ84MTJ
jEXfldPHCXbpnsacSqGJRNJYb4ST6SiAwiFFAc0YkM+sgM0MJhNsQQMUFunw
w4SL5O8FzUxpgl2PnwzIsyV0UaM2XjX82DNrLyzJbSfVqZSMm2A5fyXJHoWC
CpnW34VMIqHRHPfOvMAkRHxBO5o0eQifQ5G65djA+15pEykKdzaMUtCBfH9B
/WfgXiRMpTPudRSQy6SQGkr1dKNTpcBNC8ICwRV6TCKfqwZs9p5ks4gWaqb4
0sdA8FbRytAlonBhu2Bvz043N1Y0EUr+k/U/+PwTvnfmv8z3g/rf+sxbPVPo
5PzJEfnLTfgP5jz4YO+k8j7BvN7wfy3ntLRZeLn5teIw3zL6Eg6Oten0M/yT
ASkilwg31xE9/39yRGwsN8fPbMbxf6cYgB+nff2D+I//jMhcbcI/i2B6DzPz
3/9/4sffgJcF7svV1v+jTD9jA+wVycab2DHclxuWst89/Z32cKb64JseFXW6
lOMXbw/sFHcju0LMvx22G+Ow8cR7Y1Nt/Pz/oTcd/ysxv/elLxn3RlOfOh0U
//KnP3341f7Y/rnASZwDX25/+W8e/7HA9/7ADzAghzEH146H8KfxOPe+dL3C
ywjagHDRRxNIgsMm2ZhL08nTzAOkR7+kWFCzjRdtx8/D+IOph5kfeuRRis7G
F7XAjY4f/7tJlwjlhWu+V3A9RRxGftDP/71qmxnjeKutCLHbSTcHYUczMz67
WZAx33v6dxk2/kiAA2KD5WFFZNklouBhPb1BQEoOk9hrhbgTxzyYyhL5+L//
Oxr8lrfc9xfe/bp3vv2BC17RJOJtT4z//Z//8uNj+rzuod1w52/+1beEKuMM
+d//wfF/n/cP/95TC48a6+ppiQ/+xfGE/61vvW+B2I32/42fPv7nyP6vP3zm
+J96u9x865uuf+TZh/+rn/m2v/XJt/ylD7zhye+431ud0Dzg7NePJrxGXGo6
j2pwC/N4mgdf4ONQXC4DLLYFvpRhTpiFhzvog8bixrXKWHjCVrEwrt4V+NzN
mKBDc8n1Ra8Kg7nEuNzxFmwRx7sv/KcL3Bd5/+xdhG4fQl/k9c6hu9zAQfRs
hKeZJ/2wbyuuxJ0FWcKyPLrAc7rXFI6FfOX4uPJbw0BveSgiI2fwdunS/d1Q
aAxP/jw+WAM1hl7pCtZdks32wc4N6EzS36GAory/oLp25Tb7bgJF0DfOcc+F
x9HiemskddxrzSUt7f32mCbETI4IVvSwuvHUVF9ZrnmDGhJq3CkA+XBAiv5h
FArvZ8BzGymvZshgPdaztkQ2dApjYNTC5UsSjaXJU1KEbsH3nVTUflzgWIl4
CInYyirecgClDQGyNSLxihwsP40fAKdcI+FFQ+XZig//P3fv/2zdXZ2H/Sc6
3+65+8s5574CgSSkV7ZBEAzii2SQhDxJ/IUYXLfTgBxEOnVN/QXcNJ6xIhq3
uGVwQkhHBWfGjUF2BzfG2JCOARtn0tAW/xCl9rRTNc04E7W/ueecvdd6nmet
tc+995WEJb+z5845++z9+az1rGc9a30++7z3XjhJzkjAhd4OQvxI88VYMfZX
Jgsq40Razv1d4PwFXU86Y+fXciXpAEs3XzkOkp1SVljWQLe3/paT/cZaoKAc
3DHOHD4pN1T+aPXhumRJahnkCQhd4lJLDUmwHIkZ5HeM1M5uYXqYp77c8PBB
nbbU2DtzEFkEEblgJ7WWkZJrBgGNndxIUMuWyBkWy4GWNhe1/aGLoCSChsR0
Q6qyywmlbajLvN1xYQu0ixCgkZbONCsxrG9QtiDUPh25luXRLwNhxmhyHeHn
U/ptAQsHsBJpogYmkX9N4UBnIorECQWQPRwE2gX5Dg0ndqnQUUkiPffQUEvD
RdNWXl6hziQQ3F2gGeN0QOfD+mliixSzSRlhKUCyxUfGRzEXieNvdyC/dnQ9
GtoboESQL0MMXvCCHamBSs0AWgQFcP7I5IvJozKugFjHqzCi2YObyGL4yOxy
97lM01yeVmTq2qsDOoeLGB2kAOWg9BLe3l8AcLB3nMWkT1oL66lw45oc8Z6B
v55EsoAujkuPaaYWJrITCkNpSIp3YYZRKGNlRPlbu49eSrRGeyaaKBFFWUxQ
xInJWGJQf4uSgRu5lml1Cx0URExIy0UzFFApUh4C5y0lPmQfF4vBImKohqik
LNo46XRVvdomKMA9Z7L/vFjDAK8FVBbZWu8EWBNEk40/HLUd84fW7A4jqRkE
x0WSRW93QZ/SNTsYQ9sRFw++7bW8xT1c8IH3YWN8/9a/jn78EwCHAfmCX/2l
t7ja8I764SvxbAbKymgPf7n9sP0+In+ALv4yHxHh2kG+5Q8//9D+7f74h8fj
M3bsnfVZ9j/j/j9Gu7G/cu8XP8s4PIaghmR/8Ob8/vXg3Sd+7n4/uXcwG7yf
yC+4ed+r5GHB8QJ/IrO/knEeDID+kPu08jpsaA9f7d7/+9KXv/zQI++RguKU
NkdoczhQS8jj+/+h1vj+/37YYYv+vje+0Ve7++MLzxy++P3Qo4+ehc12ojTt
/1889Mijh43lZ359rfbsR/7SYROebAavxmMwZj9OeQz/dyDUbphkofcx95YM
vyTn4NT9b6JCr3mHKjyk6ujmcOMxBI+e8SrPe5LtxfCbkQbH8SkXXGo8mLpn
9p8mnnvuuSl//bDHBBjBnx0kd+g1JIh5MlrySbec1MkrLHTPkPGtfmZXdZJA
thK/9k9NZ/wv6DFp1xjBZfzif/j0+Dzur7znngFSfyLwCz/1JoUUjdY/+/XD
E88/+q2HKdFuBOHF/v/w+38Yyd2Np3/xgf1H//w33nXH3a/+/KfezkoyyuZ/
87ZX3/Wq0fKdeK2pdyPIphtjrQ6R6tJxdhdpKIl+6JSokeAQqFBUr8tYXDZX
HQunUBELr+mvBHxe4ZioGaSTtEEqvvBda9hM42xlnDPu6nduXrCNfJRiFATn
wivdGX9xBRHBa8yII3iRp1MXooRONWk0mtfiKPsePqosIQoikhHwtVzgDPEe
YKJL9AaAel3gLIuF6IgsQmUQjz6T8KIYyl8zvXc+eGqwhXIx72iFfoPGhEm8
wUhbizdopSlA+QMOoYp1OOtthoV+FhVEE8EOlHveo3YDwiBlBBnD3Ymg3LDa
Std4xoWsrEKZ6jITjJIOfAYH1hGoiQyi0da7HD7O5YQ57VEX4w9LWmHRjWJe
Di54i+vX4nvAWfZ+C+kLJymd/YEaqbRvP1I12dFc0RKdt1Azd434ucvGXMjt
vI4IVYOXqzw4+ZWiUEY8SbR03ZnhWuBK+7OdvhgP15cgMK9oi7KOoAhOFd9o
jFq+C04N2wshVYnz2WapFDz+jcI8oa4kY8Woi3W8l3NTs5tE1QhM6Qz51SQN
ceetEokCxVGEMV1GNkAQXGPTXeMDViewTCHk5OfUkfZS41T9ZLOUmZD4tmNk
fMemkuvQaaR0pkykDGWpnCxeyR6mDbe1OyVGCKgkmuqGcgy7ymmWENOIc/A9
UVc4HN0Mmklq5knK4RAJ0iDuGF7O4qHihNlzFbhRuBNVzhCIzgqN+YyqnKBk
e7waEVWDtdx4g8IdtqEIc1nFQL60fSrW9Ul+UzHF1wnKyiXSdLa7iBIBDtyg
LuIGN3jrrVqug8uTKQ69Tyd8u6GTKl2FBhnJVMJw5kbxacg7odlF9lTn5dp9
I44ZkkIsNxrseECXL9+BHy+Oz9Y56ErvM9lrpRpU+Yjvt2x1PSIp6fSQp+RO
V60FSdtFi25I3L0Zk9iFScVZ3rAleVQ0aJEbNg9f4LFSnPlPAA9Tf4Z++f/+
Gt7THrbQ49a3ucn71bylv59xlewvLrYj7P+vyNqpg2+ZOvYzThmwB2Fvw3Dk
G//kKw/fvO9VYUb+qr9/Gp6nrPiWIwI8Pg9yeIxyAOrGF//BAw5stf9/+XHf
/W/kpwD/4lvfsv3t4pC9dOeGBmuVLvNj3P8/vqZf0YMLnnvuua9/4xvDa91s
x/HjtP+/P/bX7+/yqfeH/3Khqxgz9W//aSbhYNKXvvxl3y3/wjO/PvxRg+Gu
wy/zOW7g51CeOPa3DE9DhkH2HpUhGGYPu+J05GqChBo2z6/4L8A13FtieEWe
uOWrE3ft4oyDp6uTJyVG0kni/Dmefe9qWTiK89/6T0bh+vW/93a//aGHXjec
/M9+4v4py7/23x/+QMCzv/PICUD4+//Zhi/+w0Ne/+6vPPjlzx7y/d9+87Hf
+9WHnv7FB77yjx78N7//2HDj4U8D33l7Lnx+lNiuCmJkTl42TtlaXNkGPVIH
e6tz3cqRMvHljc8rGZPLjqlbwuyryfOHJicPcl1LprImtD1y/e5K061uFRlF
OzSW1wOzOk6Mc6JvvJRmYRMgO1JaK0HMLybxLFYBk9MNE8Vw7PJcBeuK85NT
16u5K6V86qBuNbiTx+rUgLoGrI25xJepfLlygPJopQSl5SqIMbEujjl74/JZ
rurLqVp2rfSPa5ZK2fzTYuS08p0I9CVROGlthuJGuMsNmx6nxjN32idFY2LA
nYx2KfKBsde1+QUecTqOeFKYfHFp3q1WwxtnNWIxvi/IwfKIPL861Feh+uRo
l3PpajdeC/CJonYFkCdStVSYSW2frJVkQFETMUisIBVnTojwCe/MF1mxTo15
tTzNt5ib0kvfWE3Mcmq6Yic5znja8bo07C5O5/KlLfc1m8BLuo7JGydXItP2
q6BdkvLXaep4ulORunWgTs1Yjlk3QsyZaJVnaFXLJhy5leifyMR9DpbP/U/P
UgU0u3+ZYVdtWk4sCibwfKEQXXe1Xl+vgnO1YU8jcKU6tdpcnNmxOmx8jWcO
r+kkLh7f7sZU2hwv80k3w8g73pH+we+/m8/86i99736cH/r+u/yCjzx+3/4M
b7YfbxmNPLGlbzaMVu1NDRcPFh5d2MXf/+PW7i+wF2b/eFxv/3+zC9aeOP7k
Kw/vEViNLowI81f3v/2b7zKoD3byH/Z98G2vlbK+ufgmob0/85EPfpfPsh98
P+zwOGb/8977bi/3/weIyHcE3YFaHZ8CPPnxjz/33HO+A7w/w1eujoQZN8bt
DDmyI5Jc2GU074Fyu2HLfXUM3P4n7/bv3773/T86PBEYfOf9/+Ps41DjPvBn
PzecfPKpj/Njgv3IX//68ERgp8YokzfyMIKgOBg2vt7s3E026dlnn93fOxzD
zv/zzz//hWd+/ac/+rGV3TXeQoAT/mMCCrx7khwfxHgI9sh4CIaDd9GZXcga
S9JDdivh8x7+yoxxbI+++9b9rrgXyIyzOHSrmgDjLPtg8ZOLIwGQ5kddOuay
nQ9f9S9PGsg7T5bBl4z2YfP/AmscSrHRx82rbvy3f3f8/zv/2//47pvf/eqV
RfyRd42/o+xj//H9CjJe/96vHn5J15989VGn1mq0xPlz8eP//pi5D7z1rjNj
lF/z+792eILw/x7/jsA3fu2hN7zxtU65u+559Zeefudw73/1t97sIdYisnMk
jwd/Oo7jkhiocqVxNjvXYYedht0lSO0yryAbIxvw35WxuPpcZSzGqeFvEQsU
x5c1Pq9gTJCV9NOCPk5qXl+chRcbOrORT8XNQUaoBrmguctjgMx+Qn4AIYqk
ifMuCcVYv2iWYEkYeUdQS6NF7uzMMNi8CuEg21gzdd4LK1iF7HOl0C59V5QP
qk0eHQtoPSafjK9BntKwnSn2zotmGtP8CrFznDfSGKDgjs3tDh2vIsbRMQu1
LnMlZa8TbZDCdLFlnLZeG4xzFo8Yi5hl3pxYLjM/I8MpBx2EM7I/TiGtyE7F
OVK9MJt1A2lirUVIMfRUaCwVBOnV2d/x9g2Sd4WPZLWyEgelE1sZ5coQhEwn
hNP1SF6IG3FAezyhMaFqsh9okECTAPH16Qw5kuLFLCVMdmdQA2+oWJF2NBEX
ozAypUmy3BZrzhMUApFWZN8uK56vZ1HyyJdV5ebYUtIsHJSVi0Mk4YVJFshT
abJk0xljyFd6em6gSMwBKo6uuiPswJx0ZsXSx004GGUmuazBC0NVTiJ27pcM
Hi5gl1nWWAyLBOe35B0HDphzp0ShlBEEhJiq0o3srLplQbbypKuSMw6u19lC
qMkkYntKh11iWkofrzWouawMO1VjURiFi7HdMaqxpohG7QAI0bjWfFOGIjep
HMgtYiqInarYrvLIYdl5BUltSe4DZYkKQgpPdkNyhUqKRNhY4ofeOLQTzEBl
vlQuUTN2LRNj51Mou7jiIN+p9w7aHtuqjCqNLN0C8kuccibvglWKdgxf+sga
DG2eKYIXsVp5xU+Z6LEwzHfeHxagjcbvlD9ed7wNoEnFJO5JqDgyjGE6vwCq
vov1a4O5cuOxGikkAaUcFKE4q/xK4eZwWFsFCnkXrVdWPC85lnLNLGcdcAqV
/FcWVfhQi8vuM2k3fCXlLBmWg4USttmtCAeszgKwbKqKrf3UcXLTUncy0n5w
juhPb3KswdgQepthS9MUe4zjbjRplNMd32X9ie2F0gKTd84/8L579yP4/wj4
yAfvGybyM8evqe/4q+9nKKO7sKOOmrLh3m/MFJ73m8eHBatxHyPu/9t5SPdq
6wvMkWl8y5985eH9gPn4oe+/2zcQ9i8u3f/fe70f9t7Dd/sd8DEZ+X9AfPHT
D+yHOh737A8G5xM/dz92QY+Ah/3//Uf+vOCHHrvr539iHPbwBwUOTyjuURzG
hgfRHxPQnJJCPMblyafGpwDPP//88avsLFM7bOw78YbxkRGHt7T/763+4Rj3
/y1Nht/2c98b3jgI9fgbgY5vz2zT+Mef+LC3cIPNvg88hPjm/W8cvpM/2HDz
DYe3+5HdHt/3HhcyRptx/9/wGU1FmrhemZ5vLkaTPvzhM8uX/ezD9/b3WIXd
ORPnHYQr9IeWa6PSWiZ6CJ599l8d0Bilb/fTH/2oP/jwFY0HF7WSNgcsEbCH
7/nlCkDicxjHt/ptqN1DDz/qAZVUwj7kjuVrCMFxkNHx0XL//v8G1ZkXMuPD
l32Inxgf8Zi8H2b05z5OXdoPkV2LERmTYvyuSCzN0Os+8vDrvvXFd48PFp/5
vrtv3uE5sjp8/398mvm3P/JGQwyFfjD+Dz5/2L3/V7/zCBxxCbKMeNz2/9/6
wF2j2a7A24t//hvj30z5v37vPa953atWMP4wVHf77f/yy4/sP/13f/j9d993
x4rkGowFUE7yi5HYWFFe2O4H+Hn1cVZgl+iJU5c9YlraphByylMjxOL6c8VY
IGGnY3EG7wTnlwM+fzEwcXu8qWCNJaXyQSAj1na64FvzQ80/VqawHMtDttkr
lw9I6z5Zy6ywDGSnLshU0VUeEK0U96j29QO+JQLoomRxceHyGgT3R3x4A5Mp
JO2f5T4bRuUPCz0tVdYwICJbI5VRywdcbXlY7DWZ2cycHbxGCfACtCPEvE/e
CR+YoraUwPpaCp8821oZArzPgxkjIXE9E0wU243xVsGlwBZowVQs/ehiv2wF
9lo6e21F/8lLA2vqfF2zwXlqPi8UYSiDBg5Uh20bLqk7BfZCxrfVgfck3mWd
0cgecW02zH3fc9iAim4D0/7MQw+bXTGIV6oAlIyAC/lIOsNLS56UwHENsYh7
86yLWa0RFs0NvfU0tAaPpJtvIfScRUZaBgEZ6iQRIUXUcKD59LuwQEa99kJA
Tb6kgwcFHHPeUihdn81OqAEDTkpiKeAo+T6AD3VBfnlBhPEI4pajGVtoV7YV
28Mi70kHAJn8O/CQqI5xiJYe8TOhsTMq6SFrEbEaerJNtnlR9vTxwG0zbRxb
qgtWnX00SxOIADYZwGeItgXUMsJqn6NHSk7th98OKXP8DSiJkYzgRXblIAMB
KhmmP+CAUQIdmq8mvNoi0JYvWOXBeI4CF1OMY2T2vRdPGar4pr3UaLkLvjdy
xmlFGWqhsSQlG7zJ9C4CImmfchLZWpUKOtkJrkrpSVS03hUaSPqAIk69BNpX
LXPeOFHKgDPaKXFr51oqtW8F21h7XfHIL+EYenXPL6+PLGKWLxdkpJ/x3tUZ
a0JkFU1oBiqijUcn5gLOgSbdQ6qaIlnNpVRC0J1ddjEaS2eCmRG7O+Ke6Yms
BZjeRD8LtEsZHKR70UWIVFKHY+IsxngUSMQIMcpK4E+dtmg4StIOZLN2gkjr
hd6DIsZr8nKPR2rDlVSXEmcUGjQb1DD7sGh+XNk86SwdkCkQHLCRWh2qGt6v
SuOHusP1lDhJlZEy3fso6lW4sFLJQL1GjFztuccAnk5XcCkqpF9PhQYl2D7i
FsIAR7mXVsf62x29vUAKcCsOhXEVAqm8jKJOcS3zvLAul+oRiriF1d0hWZMi
C2zdu5V1Gh/54H28yfzg217jb9/5ttcMg/uu9WGjfrP79m++i9+6Se+ke4/f
fn8NGXzBr/d3ffHTD2AL/R88wE6l/X94ekaOk1JN3kIttHNyDDfvrv/JVx4e
/kZA+LX/xwciAfnDIF/93Dv4sqnjq7/yDk7As/D9/6NVv/pL3+vPVnzYvW2r
w/OUuP/PXrvvQoaNQORpO/xd2uF74Cj62x2+HE6jgWzGQOwhy8gX+P7/8d7h
C/+f/NQvD2+HX4Dvw/pmu5Xj0Qb6/v84sv+139Vx83z/6X5k98v3oq3MjWy3
7//TEonaToeCc3z8LwlPfNgH8RnHrXUzFZkIWEBsL7taTJ3thy30IQQDIMMx
7IofzmxpKA4o+l6k+TDFcO9gZOYAuXMRLhuG+rPj3w5A97uJBjAZ3E5fnvAZ
6wk5K3eExs5x3hPjjLjnDwWyshW+0Av8ok5Zqu+2r7n9kz//Zk+Z/evtq26s
XEiPlr/tbeP+/9/5mTfZXoTXptG2//k3xt//r6BdWOgPUXj8x+z7/w/c6esL
v+YrvzKm+S/81BtXmwv14vD2p//mG4YLfvAv3+sVlkTSV8RY+KMdisSjEnDN
cdADGz7wxdtO5xK6I1JXWRAhFkTaq85VxoJXTFOxWKnXLx98/sJggp7NU5vt
sRekJDtCxhHg5QY3Y5rjtECzNYh4zWPCKZVBCiX3eDQFu8wjB/Hx9Y5by9tl
0tXoFLQs0gHH4GL9zghIqSIjpZdjHHZxhOyCAkUM3KEabsM1tMuHZiM3ouYL
RZzQuEgGMFu8EwOrz/he7Xi1pfG9AhQpY0XKC6uYRkJzn0r5GXKHLN9eBJvP
AJpcwLrhc9FoXh+1xYK1F0Ik2bXYrUgoOPFjMx+r8E5jeqEIY7uAdS+yThgr
AS3jouZF1hG9vevQYKWuSSEVSpw5sDyjb3doRFYbyU0o7SZ5ZDhE5suAkC/f
BSUhpdCjXvMSXjzVVKWdT7PZ1oag1pkS8iyQCq75a+MtJf7KNzQ0yiGUHCmR
msCWCDXtpURqSS3g4GJjhGCkipMiteGTSHOeV6K8rUXpTF2QnbQwXXyL1OBC
THtlRCSHFJ1ApDSZLYU1GaxAbSbUkoZCJfUYUTLSysKLZqQf+pyQaIR/MOCM
NBAk5A7HEUtZcKYzrmy/+sxIfkYA0rJCE03Nww4VEIBWj1RnZ23zkN56yQBF
I/hbTpYLniJaS+Zxd0Rb0Ew5LtPulLQHgliu1FFwipAxUSnL+PlRCH3MEe5P
RO5ASC58zCjS7WB80XWQBGnmrgIURdmSZe/ZJiCDjMhLYxCAsl65iqaaqI5h
zwQ6Lc1Oqskuy5MxlX6OAnBAvaAmNifvjqGosoB4m/V5bGUDzvEMbz2daeKc
EeWyVXavCtQmGmPNUuwryoyQWiYOcq25EJpNpExs7SoOM5G4sQmjjZqm2cT7
ut4QioXCaj5/YZ1eFIoi7hu1GdLKYGZADDEZ6uLMF01sM7UiGRl4gX1yGdNp
dibXu6pfkKQHeZEM4g29wArq5UI7l7o7SVJkVuhhVKAIqLB+IWK4mNTpOXHm
7LIrpw7etP/ipx/wxwGH30hj1/Du+v6tvz7+giCZjv+awM//xPecMIZ/T84n
fu5+RqPczD/t0eQjAz56ecu769/8/IN+nrfocb7HIPfevP0qm//Dsb+YJ9X9
/91ZD/wdEEe+3P8P7jAs9npLP3HB8BX0hx5+lM+H75DzjcNruUwBXPHv/6FZ
nn322f2Ln/7Zw1fEf/qjH/WP8P1/NZj2gbfDyeHr5cO9x9/J8yxPUT6MKI3h
o+SPmrQNQ7Hx6dhm/MNE4aP73jD+z4Kbh/8QcTgzfK/+uA8/aecU7XX/f1tc
OZjXxxAPl+0hZUvOps3ej/PJT/2yP9Y5YfmJ42tf/0YIvcb9xL1bN8NPHv/C
S1TIR9599x/91sP+tf/923LA+77njuGaX37ye6fm+uOvHL6c/41//JBNDWL4
jL7//9a33pkJ8IVfHv9m+nt/ID1APDry2CPjryH6mf/oDSeiPF7fx9mjzacu
uOI49aGScivH1eeq466Wl7GY9Pflis8rERNKwFhZMgJl9xJBSNVEZik/nZ5R
7AmmXj5U6VeO6a1nwZWio/ZfBcPg7K3y6jDI2UQ5u5o7gO6aNkxCGpv8ifPh
lsnq2e9K3ubR6hGupgwVA6+LZJzxlFVXGnObMYxKkgJxpier1mJ7XR+vbnk8
rgD+WVSna6aqkt9DcGpG67sIihquKa4W45+CtOrxoj0vAfhXuPfsEsv99on6
deqYiqOePxGpPEs/kQjXmL2G5VQI+nq0E9zIxjOGtyA1V/Z6Wg8vrxGXIca5
3F992GKQdP11q/N2CsNrlGkk/lVmP3XN2bSivpC0PTljYd50ecVCrCbtLZWD
k/iUcJ2Wwe0JC1fEutTjXdKHXIKJIVO+LUZIWJ2dQv7UeXyUOHx2/aBEla5m
j3ZWSnVyBMH8clRP7rHEo/eifC2Xdeq+RGBbBChF/NLSX1t+pcSPyl+W3Qm6
bl2srmphbdLlaSKmnuygrnBco05d8+L6euH5FfqEs6j81Zi14NhR9CcF05Zo
a21J21u96FE4llyS+kDm7XEc795x3jftv/n5B30j/aufe4fNsv3A+17nG9E/
Sf9f4BMfu5/qwuFK/mL8YfO83y6Pxi/F/e0HfgQDHr4E+9hdGKTczO+Prg32
E1BL8/QzTxa3aJN5QMncjzYMpg7n3/GA/C+G8SkGljxb/y09VzmG25cWO9n/
t/D5/6fwpyHDjHH/3wI6Rpnj2w8McTbSleY79rp7gPP88R/IIwI48mrY7P3a
179xPC89/LjlTlAPe8UPPfzol3778B3+EfPjQZvtW5jdb4d94KfHfeDDFPuT
+3v3Mw6/qeaw80xx1A3t0dS9+7b/n7oIjrv83PL+/9Jd7set6eeee+7eww75
dqBfHAQ4ezgYnG2cbrMbfj/S42MIDhcM+/APPfxIvPEQDguohGM7OIv9/94X
F9tjxLcSRN7/hzHbLzzzzOFPMzz18dHsfusis/TRbMbByPe+7/1jGh5vMcsf
DWaTGuycP6DZIWfHKx/nuLuzrlEiU+ba8eTZ8U+oQz/77Xt/4N5/+83D39X9
0z947Gf+5uvPd+MgSwnEYfz17uL5f3ZIqN/93IMG8o4u2N1x9/inPX7tU2/T
8G15Rtr/f22+5u8/Of6nnofeeVcU+aNrb37z+IfCP/7RNyJ8dCWUXDJ9W/iV
6HGL42xwnnMkgTBEdpvCNHn+inPlWEAQNtmM7FSB83cUn1jK/yJhgkGWbBtP
HSZyUx0oAEJDQWeSLzwp9MF6CYZxKH895GXpnnJEpBcy3Qu6XaAdRrCCEhbs
PWnO6B3VYtzljtPFjLbonkEtKG0F1cgQwYGEnUemiPfkbJ8u69lUR2xAm72D
/TyXeEe3GyAl7DJmwNmbnCUuo/AZgNTmkdlgO2coZ3HkZ3RQz2jykiCENGSv
mWxjiUyclC4XtPdZqBOmNAcOHBGKfk7SKCBcNMcLlowtKD0Sb9lv+a5pk8Kk
Od8zwo4D02a7zHD1E1R0klS5vBTR3tJJXL/kWTg9OYM2IYI8QmI40N6uEMTE
yaKOhJQZw7qM95ogQMA1B3vTxlwsgp09ex0MS/OqwUsdZ+mgYV5Ec8nhsxdL
n5pzjdPNdb60oSRVAL8P4dsSXFxllAPhtap0CuVAqphlCa4gocHCMZrLdGPh
qUiQa/UOoRQXxpOjjnF0JHO34su0HhK8CR8ftodhmizhGlmOKZ6ctttI+LB8
CKEJYarREz2PGcosEpdh89KjECoCM1xqvXdcWyqsvtTKZKYSrB4tgfAwGifI
NmQW6cB2WTLZc9NNYuh6zkq6LEeWuiyQTQolhQ/oUducytYSKImFrHtayCQ1
Yps9GdmQNTsgL7IMR5Zyy1AWq8obaop4x1U7KJtCTfAu0Q8bGy1ASx8hwR71
M0kxG7B0A0iBC9psBnsU/J5qLqXt0j3tafxooY8WBIEbCSaMGSC28b3cEJLv
EbGtQCGIKT6AqOwNggxqOktZpNxnnshoXCY079i73u3ReV0tWYuyPVx8hXVb
ZSbltdfQ3PYI7CkWrkXSumjua6Z4FKTnlFKi9FBLlvKWqyE3FZwFvIPN0+0U
ipKZhd7Kp6Hz5Oa5pwu4jzKGLyGAXPJIQIaQYTXH2jIaHL7xjr19F5Ye3/nn
39vzgR+5RwK32X7kgzd19/u7aZdg5Ma9N2/nHe/D1917F43DxZ/5O2/SzXzr
EskX36Ucb+H9/yf/0tIR6F1StjrLdm98/J6/XcA+7s07focfNnz1c29nB6kD
GQP3iY+9wS/YX8zk0f3/sfTvB2HQ3vm2OwYj2cK9U6P+DHHvtZL2Ow7Ecmyt
Kbn63dPY/0f9GvbMD/vPPqZn/WZUVPyaektPn9r3//3MsGO/v/j4J3SfQRG0
zfbHhy+B92NjvOzxPXDewxm2ygebH3z4Ed923t81bGgL+Y+mDsbY/g9aLH9I
tApdU791TJbOK6PK8Ot6hm+n+zqFSr+VaQJ8RUYGXSpCcJzrk5/61PCLdEJD
SOUMD7kgsLZ5fsSB26rBJJeLwy32mIAfG21/+H0/OjzgEPXoYbkBtX3cHoUg
+sfDLXfF46Xc0kZb2e9T+tJvfxlKeLzlcf/+v0JqCUUDjqONtBz/A5pp2l99
7J5/94eHHPnWF9/9l978mpFdovlb1r3hrwP8n//To6aryKP9jO95ePxm/n/x
s28a4m7RJ+N7fP//LW95bb7mR987yuBff/9NylDzsd/+tR8Y//jI3/gPvov3
UZ1Fjv+o84ZDsbhmPff6eN1xNmkcI6393C6xB8jtYlXT+fzV5ipjEXNqIhZa
FgVnT1vceGs4T9psIbgWVq84TLy1lv7HRjvKxdLbJG7+SZ8hSl7HXbIwo5cG
W8sAk232hQaUwuRK4kPJ3gU9GU+tF1VzpBhsWEpfwU0X2lErnfDIWGGYe6ry
AmejsMSWjxpR2XqlcpNulNWxhdsBXKZ7wX8fn+rRSmrrLhc+8jeKuRcOjdrW
+hl/ngUHgYk/7RLyowSApT4sxVGfa++M1V5wx5D5IIjphg3Wt1QiwQ1GWJi8
ddD8KTZnxJLfbjxx0LyNadK7VVtm3UoI6ROJteCPT+ErAnecOnnYxj5udoh1
XKRsV2HkPuAjZPBAYyhOFjq5JIQtB5FBrrS0qBESxocpUYJ2xOotwoEswKYc
BXdkHSes72/Qzrw4TqmdVjSghFHINgGWcMeoC75JDWIlhODQ+Pw8RVeU8nYJ
7bWKZlmmQWRJp81Ac1BEyVYB5AvvCDln0EgsKfre5yNDe6QtyKlFKkoTcQwL
qI1BzcWOq0/PoJEjG3/LUZYlCZGNNEo47AK4MwliVfcsc1NZ0mXelczr2U1y
BxA0Yb0GoTI6mYfSqcLYw7uluLmjXBDcVvZ80NykqgF60BROfkmWHZMfxkiV
l01p3Q/0dNtJNZGaC21x8F0ZoJwMIyvDZsfgiCMbjpoXOLYwxI4ZtfNajzBZ
Xnt1C4rt3SwIyQnIyWLFAtfTC6gZJQ43EngOvlFe8TKcFyyUv6gUTn5ol6zW
lzzCxqziJmRjbZ71e0s3XsQWQkqJAyXhWJO2uBgyS6FsesaaYbTNrtLbJbvs
edQ7VmZeZBG9VZ1xPaFyz9kddBiiEZILVPHZeYViwLJVlAVaR7ykcrfcwyQT
zy2oiAaeETCd966GlirLDazSDsoxsSqjsOhKhNZiyE2itBRW1lspdqQwDIXf
zg90LOKUgDQmNHYJg00HksjIJieoq1YhYVHNjRiqG1r3ud+jlUvIbm9HYxWA
3lK9W1GnJM6aHmLvyAWnoKUvCjSaxvYk2l6SdhSL8d4ltux8JSIwQjRoXu46
tEnTJwgQBF9V+WJ5a1qH/F2GaPJmDsWXewnBmY4QkdB/+vGZJ7Hf7v8X4Acf
u5Mx5I1rP8ph/5h+sc9+tMMOObHxnpu38/45PSOAs2zP/nWwNqj0AF2+xT9d
eSvlgT4e4fv/Liar4xMK/kVG44CmnGz83h2F9GD/Ox+4I1zj2ccwum330HR7
cKxqiIVHG0JDu/MZb77+jTffcD8FYie+H48v/faXx71uoD3uPz993IOVlKGf
w776Dx+//k3FGh/xLCv7Hv7xlh/lwNH+v8zF+8AeoPe+7/3DIMP/O1iSU7Sh
jSwIxjA3lkIG5MiKTeqhQkOkbr7+/uFb68enDzFlSOHHuD/08CP3vv7+ZYG8
S+52+DU4Dx6etowXDLMMWK3InbB8WCpivP/v6c8ouWKvCK6VWD7CtSfAMq4U
tvxiuOzJpz5Ovh+Autcs30dq6cKIWXbBweMzJtEK/L8PRcwbJ5Y4CiUahv3b
5mL3vxz38/c/77731e4IJJRSfrDqv/7Px2eFf+0H7iX+jNM9/YtvHT599F13
c2qHiH/Qv///ltfma7avvvjTPzj8f4T/7r986zINsj/+nv0HgXe+484lqbRy
VYy/1K+Kny/aOCwsSsux3k2dv/pcORYk9bHX0uybstZfo6y/FDjzEvIqWL3y
MBHZ9NXuVueiNgMde0HIZU/rPp03oMqjmRTs+EabRbZo4oybncRCm0ayh7rc
AAXHgl5oH+IQjcB6d6p7y9BJ3wcIoaxgiUjGDj9MnUaI46fbCa7C09Bj00af
wAhMuLN1wgTMCRAPayCweCHdeLzA+iJey2BxxHet1F9JH4VlCUBkFUy8YmYW
ZntWLtVOUE6ZUHFv57XVoyMTbUgZaujI8s3Ep5tg7W5ZMSRkAVOXDOO8pi2g
RMK4YbXJg3v6GBSZbMQKTcOcINkwt38XAKGlE7eFW9485InymaWFJuQXOSKq
u5IQeLh3/tMZHhzR4lUTkuctU6CYWj4qUEVwo2xK0MWqMAt2eIIy7Jb5YssU
j0IV1kkfmTPWYRbjI002oqUxo9XgJZUP2YfhCyiLV0kJs80rtZCzRjJls9Uc
ASAoK7Q6WPXBd5a1mPXL6LhsjywdRmr/ohnqslJrl+baiaiKDb6N5ltzcG1F
/gptVC1jH9Vvw3REmHg+k8FjUZIcW5EWygk+K9TyMAK5zxcHSnAmqqchH8F8
vT1HoZCF1fR53FI0tDXb2dNyaicPZxCT07zWxnWiA5RWc1ztRnqXaShgWkUI
BAhTpyxgEHKpLUxNORuZw5aEtjO7o2YQXFTUVnr7MhlGxKsvC0pVcCOgSlQk
BqqyhdHiDp4uo/ISxvt8USfPlN1K9J932tXgJMIrnj1HMPEf9Ijb8gUNeIRc
y/iuo2268FFJjOkwIUH5tY+WryH3dZ9/gnKZBinR0LcHKuas5NyRHOSHX8mq
wk7ZNg8cpqWN7s9n+5fqdWF2IhU/cah8EY5JinXHg98Ol3X283Bmk/J3A2No
hBUNEr60T7vTGM3/TK0f3/7Nd9kgGxp/E363z7C7/pkn37Q/9oPwvvq48W6G
OQi8mf/HX3l4f015/OBjd666cd6w/0/4bByTlUC3yb//h4ENz0Te+cAdw6cf
+cDNAoHx2PgI/NcNhgccwyH7/x3g9f9xMPyHgmzhcf9/o5QeI7sH4dnjv2En
1i7YsG0PPvzwsJvN6bC/Zn/+z/7sz/bnj9v7h/B5IIafjz/xBL4o7uSxF+NX
7tX94fvewzfGebqnP/tZfwDBTPbfAxOoO/zBgiefeopJvvTv/xPtV2wMjRzy
FMbYNYNJj/MzETqGhyNf+/o3BLRuyxcPP4dd7n0Ibh4eAVBuOlzd9oePTzQG
JB3D/TU/dfxDCYffNbS/t0sGdyOk+8HvHQanuAzf/xfu7eOuKmGXSRbsyTPY
M4ReP7LE78ZnRvK0hQYfLIdhXUix7b2vf8Pwa4K+8Mwzy5G9G2fmVNyXNvuK
bR4HH/jpS4nNf/rE64cEefhddy/tghBuiUW/feRd458A/vY/ebi7/YI9+r4H
7zLZeWS98+I7aMhmSNiBbx/89+T7//ma3/j7458AePf33aUB2u5vGX4H0T/9
Rw/qFONlVhQ2Yvxlfi37LSv2qttccZyi+gySflShqSSSeHWXnL/c5i6yK+aC
6LnEQitjrIA81EuH8y1g9QrCZMzcjtmyyfZoq7NxR4xU0RJMlHUPjm98djI4
YVtZMoVbbrrYnbLNE6/FO3OwC7fXZAjlYwlUHaiN3N55UDZswIpxkECTSSqk
PKD4Zd3XsU5tEjKxb+R4rcI1ep6rhg5bEVLQCIHbrBQ3DkfmgPIwkmrVbeKk
PFQnvF3R1BJTIucE8TbEYTay6kjZ2m6zLC0nF5aUEcI3UQx1U09yJzOSpIsm
CZgpQ70c5yCSL5J6ObMKkcGwm9UVzMhIAvmOUeLEKYYVznRkf8wyQjU1PNGS
MRwbyi/go7q38cRcqfQxYcjsXHQ2SrY6xVYkEaFXXFWStSIfV4nzKyp/Y2tX
1axUj2IcZZYAZldAKlBHbd9wKFedOrV/C0UVwmRuCGLdNrC9VOAVmR3OD+o6
QGQBQuzYWRmZzQgMjB1y0I0N1Y6teM19glmCCohVngLlHA6Yq2JTXdusUvpU
NXEjd4nLW6ITNRIxBcLUdE2YVGmWyxx9upEk6ihn1ZdwSyjT8egyAptQj5yx
EVI/L4NscioxYhQsWiFGmdKWw6ZIVTumQJh0LN+xvE7VfSq7QVhUV0PfSP12
nCXpXu42t2iQoPnJ4G5LeRoH59IpvKWFAE1aVbHK8gB+MGyl4DD5o+ZUaUJZ
qcggnSUNda5RNGrjO3y6YnbxyF1c0cs40ueDdXSklvUknhwaM2ljyhY1LRSm
0FNp1kyEslh6DBXfy3ekBAyb6GfysZpyllqIlZyRBZrKuEah04yDzeSm7gpG
IQpFIU3K3GDLoc/TzVUW6jCmv5bolOvB0LClNmOVlFBIrrlv85qAd8GMTbCW
TI0d/gr26LKauymbxdC2vsvEClHryEHrOuTAUAeivuOBV+cde5WIzU+mZwRf
/PRbl+xpBwvDL7SZOr79m++65+YNSIdpBe+9nzg+8COvM1g29f6/92ysQmZt
/P5/z9ds77n3Bj+q+OKnHxhQ5V8NNE6EAKGQ8eOS8Sv9x6PY/z/+3BszPNRg
cob9fzP+aGS34eAO+7TPP//805/93HEz1ruXw2WPP/GE7aV/HIAYK4ZfSrO/
4LAPLOuOwwbv8OXtYYdconwcR7bc7ee9r3/Dfsz9pKpCm3Gz/UMfphI5mDfs
A3+WObn/uZ99f3I/GpY5R6rQhranWDBmg1YEaRXa5gOGT4/f/38iSL2TYcDt
cIENVZaGpf33ij1cTz71lCby0ccPfXhAcu8UqcpIAL/3gLNk8ebm6+8fPh22
2T3NH//QE/4cxJEcK50BMoxDl21sBToSbHhSs5/38L8A6PzqOO/wvxX2nx5C
AD2hjSl7QLBHaQ8RJj1cc3i+MGz+73+O6Fm2sguH3/tEjCKcnaihLpB4dpvf
+dwhof7llx95z8N3D8djh593+dvhuP9Nd7jN+xf/+JNjFv/Gp9/+Pa+/Y39+
vd39lcde9+1/Mj62+w/ffxOSi8NXSZsPxt//swnXfPf3vOp//93D3xH+0z94
7CN/43ted9/hPwHdcderHv+x+/7110dheeyRu7VCDaWElufcJPcBh61gwm2/
C0vH42SGX34vNX4uVhsIndEJPU95/io2s7yA0nkZFXFWVadlrIlAGOGlw/l6
WL2iMAmyr/OS+4ZG7orJNroxvIBQc5FyhH0Txvjc0Uc+Y7eNIHQbxdClhpdF
QHXlA/ZeQbyOqBxBoDhSm2TD+OnKPl2xYUXItuGjwSSsJhgNPgDXNoaJEFgB
AeUShUwtlO5urCM8Y3CfuTGOplSEIhH+KHzYbVt5W+6BkE34DWLkoYGPW52U
FwVEAAkrEU9aLGUaDyhRkOwuVLdjBxnqZANfjNB478czMgHgoKw9u02ai8pr
ZovMmyjHGdexp+PFK6/yYWSRRwWcs0ASSmLtlq/Cp7CQx3F8GEBWM08uAJI3
ExSWrY6gXO0Iok6D0il6zFWmaB+g07wYVJqup/BxFoQNHxZMBjOJOZm6IhWi
BFQ96T2JoFeSj10AzQQk0iDs8rFoM/04mzhz9QgqJ2wnxztW1IJj4IzOwiEA
8ztm2hSXQpkj6ZDQSHRW8RaJeLUeUbrSFCt2ivU8DbWCUxVnnBsgc0hMj2mK
lLQZA7t4lw+W0OMVIoa4GU7GQrAqBcf3A+2jlYPTGyv4I79L5NSdTUUQWcwh
yFixCIgEgWY8bLcV/gN8soqTBVmv6EXBjxGh9oBTmLKeXyMpWK9igWBrdedz
Q5arbjBQsehsBJOYUEHtMVdkFKWqBIiHFaxUfjtzPOU40qdTHMRIUIv6DUio
NCcG4CrcyHvIHYgtgi8NA2cKAMf+ZKdSxlWM09mHZXZRFeCQafWZEnkSnCBi
IWuiAmAKfe4cOkajdxxEPF2JRzzpVs8HPJ0wW+qNeZ24ibdw1+HXe2pwk1BB
serIVKYKCc5KQkzzosxpXWPvMmM7jQJUC7onUsCUFs2xlWYoB2WPIUkHB4mf
SHMWB9qM2kZWTKmTNGYE0Vgv0oy93g6GUIqNxmwDUNyHr7qteE0iSTpG5knt
CBpCWRmvFyFd+O3HqcPX8g+7zSwa3eaee2+E7fdPfOwNSb5w/OQHboYxw/HV
z739nps3FlzXus3iONp19v/HUMb9fwg4x/0wlzue9v9J6I4/w1OM/fWLbsNO
/eB77lSc94Mfge3i45LhMcf+Av39Pxv2nWm/SBbunVoAXlaPAbftk089Neww
D3859+nPfvZ4fG7Ygx032I9TLJKwD7u4w0bxcOMXnnnGbzxuaDN5UB+x5S4Z
dDSJrD26s8Vmuyjq5vEP2f6/nh+tlbw+vLUNbZXxbjMYs/954jh8EZ2MHE36
0BOEKtm/t83/+4MSNVbA4+tPfupTOQQJSZllCMHCHo4Mc+1vGe7dDzIMuLfc
/nfAxkB7gnCgjoXl6zgF/ptApSG/8NTHhyl03q8Pxuwtf/DdD4tQS8E6zDJg
OFzsI7jLe2odn+CkImIu7Oc9Ea8nn/r4IiA2Jtoh1862u//nG49dRSs+8/G3
OH/2/L/zdbf/r/QnSP71198z/AWB4Xj6776F+oekwMeDvv//GmWFl4DNW9/6
2v/7a5ALfv1vfv+xv/6j9/mYKbU3OacWdn7BDOy37FcC6oXdW8we1X7h9p86
f7V5eYQT+CecF6HGqRDxi5cQ52tj9UrChOQlKADOLPIsXTXUWOipEZV7MbIp
v3drAY0BUi/0R+jCjI58HeituOzX8KTHcumzLOCUoecA9ltFcruU8UsYN3JB
LzIbcmrhlodOry9HGx0Bzt02mcG8EmsXiNSWQHYkiWzBvNBId5mlXGGHZsyq
vEcflmxrxGTBReGTTp7XbjET2eAFxkxhIoYvaGGlH2VryXd4jdq9GH3PoVR8
Yh4hiEeVIMyjd9swY27PlKUJsRhfitGYIEf54gVRv+UbF0zUnvjQbaNHMQvI
Zr4rCtF2IR5tF3KlJmxvbT+GpdALr5ghyh+SSkhTxDnn19bJRndpmhxPLnq2
YSt5Hc/ojHl1H42poh+yvki0QAnyVFVXzKjkF/Htk/HB1FT1FobMIGUelIWt
7Eh5WIGJSPIiQkRVppLKXu1nC8epTWMVHCLnVjST4yWxSEEP17Bt0KJJ4mGB
7yUVBMuUkM0E1X+RQRoq6bOU6a2l5GYZtK6PDFnwLEqGhRCb4xIUYzua3dOM
nacVE0kDRECNksVO0WvRiqyovQC7EGeB2ELbLXJcOWYzqkDpmM75kD70FnHs
06esz5FjpaZ5vmxhuYyzIdzUYNCmrnTKKJ2x3wSdj3kU79LZoXIWbqkX3NsE
JdQzRSaaAoiFlTBKd7SVQGfLzeAFCCn4a+IwsAPxtn4eRccZFYVaR7YALbpL
tGXKnolCw3FhLcLPRT0UJWbnEq1NeD9uBUxCypkbKZRLW5WPfXhdaaYwbcsG
10tjnR3dbzcsNxA4klCmpZeAbXKKLuiDy1rggtD1cheblO51iWNtrIjRE56k
WvXitAsGs7QqSyMOqZhy1vfpU7ati6ZKa9epPXhBUwc6SSnZLERh5HbtVcYz
WBeomwExqmVKYwsHH3ySnSKaHb6vLr9a5z2v5QI6XPPFT79Vr7kzxl3ovbnn
3ts/8+Sb+E/9/n/H36Xz1c+9/bB17474YVb9/E9899Tv/AlG+gh8y9/+ie8W
uHpMxHbub/db9u6XLuxN9Wv2vvAth2/1Tzg+vM6mBpx5NcGxWFQWHn6JkNMj
+TIcxy/eY+t1+Pf8889/6be/bFvc0Vr/+VM/+9Hyxh9+3/sXaX/PDf78M8/8
i299K3Tdi4C24f/kU0/tLz4MqOmwP7M//wtPPbXsC78W6YVv44cpvnA05vTx
eboxmyTwmr+Dj4fv7acQB0/3Lx5898P7EAz/ayAguf9okfziM/sL9pcNu/H+
bx+UvZHEkJHYA2h727xLLCkxwDV4nVg66tWeNnvogs37eX/hOG85po0DY7Ll
X/v614+s2+YIDjYPLpw+nlQbeNL96ze/+TVX2fzH/j8d/e27X/zYm3hPfn/8
0W+9+8d++N4c6CXNO5yR3/+TzFsYhR58x52/9fQ7eYr/458+8sXPvP17v/cO
TxY1TIX6JGFORKfMnVu4dzF9F7flXObC+avPu1CET+MfcF6k27MovdQ4Xx2r
VyQmYWkWsYotTdArcz8vIk4Nu0hwnUSY1gJJbaZuLyU9XzBlhliY+ny5Pi4G
T9k2cWY7Ebh0DTMhDFWQMK6GFhPo1Yc2BkttUWScPo7JVgn45XJ7miQVaJO8
OnFmKjevcqNaEtv18vxVOHD6ltKwCXGYOmTHYBGjGZnD9bf0OjubvJMlW3Ik
LpdOyiMblo4+Grmg8yU4Jdun0iHIqQzYR0uWlgIJNAFhwrBTOFSbJwJ1cWMv
qbokoT6d7LUipU8jMtXaYYLzspR2QqYQhFV/bbyzugxu6enxFqkjmKLcf0vA
5pBdqvCnrUq1I20FVNJdCv7puU5zchKuywQzUKs0ICTpwr3u5fYpbZ+qBbQL
WmwITIXpBFyTUPTFLXX0e7XTHIxQ9NE2v6xUDyNGXMAmG6qELa9U2pwmAB3B
5uqavrAk06Caom4yyzDlrA+YBMIsYlHwfcLLcOj1WXx1TfYrgONCNxWOaG3J
+aB1vUyN7iu1YYE20+kQiZojGE26AlvYa1zjJEn4l9EvJahEJg2C/dKp2E2y
LlfeqkZMZOtVT0aedNCQKaeiyCB2If23i1O3xBEmpyturCX6hKdZik/w0HGo
B5x+aBWk4AQlSstDUHDNBMEWbG1yP/DnBCsWXX943R7Pt3ay9Sv78d422NnT
sD0usyv9ehuqtxl7H3+BoY63t2LbeD3mHW8kNw93feBHXrc/3vHWVw8mHa5v
+/2xMJOGW9w1fuFWHa5pad7xtfs+ONsrAqPj44yKgCAj2JoXrYNzNLWl2+1i
+xRIgmPtxscBPi2B1vbm12BhsA1RMNd6jBk4QKHfH49/6In9cfzyNg8C+xfm
8kLhwo3ELhukl9CHoDPHWgsZZud7nWZudk+0B0RkYT8yYbShtzPuvo3fOhNG
kyhhcZ4oNEzXe5Yt9UpJE+cJhWA58kSTq+UQKFGBQAj6eHJ/y3Av2+8XjFSU
vGbpEB/xaeu3FzcOF9/7+teP8xqYmuyWJu2GY8EiMFg+PE+Bs+0IEYuVwR6V
xHSm9zHH692k0YaeE21MsdZv2SwMTCchpy3L2utu3v6XH737oXfeeeM1F5VU
uo9QYJbW8jyL5/7nnffcvh//B77/dfd91+0cUMJkNJiFlGVk0V7VL8/WF3iv
izN4TkeFeT9x/hqxoOmuhH/AWWn/ncP5+li9wjBZqBd0I2zmOpgUiZWHqrm7
BgWGenO+ky/AbemyRrAvOvFl4VC3jIwXEQGKPmI5MqFWDCmUInEMOCEP1UXP
Y03FEqP5pwKCUKuNJ4VywKoPdykTkqc8VItcjm1S4jlbhfGpN1sIJhupGpxx
Gr6FhV56S/GiOBYqfV5S+UZlJnunSWG0XHTUp0mr4yb1I2ipoVriSmHUkgAH
l9poQPZ0kV4bRP0iuWAa1cfZJ2YhAnC69cwfVwzNR+lyySnOU7JKlASMEg5w
AnJz2zKpenJEOk9mI3QSWEXaMNWZxsvYIvKLwmUyrOc2eJHsTH5B7kL/qS9i
8uKCtg/ZqkxgRTLKqXkwjIPb9mGN40PJ4Fz7jMwLvj4sCgA7u9xbXVA3234h
7jDCSSpL4WVh5BUZks4zBSsLKdyhLBJdR1pq4WaSLCQuWH2Pjmv/EHxxS1Q0
+gXksU9X9kItxk0X0Upsv9fi7qEUiqJ7YSYESDU3lRsITRTDoPAqBR5ZJ39P
i3dZJtiK7FSJjwnYcckgG1qwkfEEYmkjYqEO2lsGKlRGQB2WacTkcQ1Oq+lE
1+SRx1RPSo8RzODLuFuzRbesL+ItJOkQT58r9aXBbC+4Zcl2m0OWQdYIh6Wl
edArTS6Xps2iVabpqpzFTe2JPT9yk1KMpFiKaUXOkLB91CtCjBsPzmIBQd4K
8Vy1IFwokaoYnbCOFuMUo5w7EVJ6KyIAklPGCXpBoqUbiVU76ZiEb+Qwum5i
GmOeJAI0WLT9kgQQ+WU6gKC0cjulCbUHunhZuqTImkhS2870XDpDz7YYl0Wa
quNqS3RbYq0rtciisBh0SpsxFXni2lbWjMhZJEjOCyDg54mxi2K0wHnEsUg0
VeO0SzZKrq/BOZHzOoh0T7NDg6ttOe1kklZ4p2dNSO+rXWsYGPleV/HUUbQb
J8OCkteYM9zoywcS6jFN3OzeUoMaD1+gtagOyPeWVoJSRnufaNEiT7nxGK+h
lSC8aN131pYesTNnl2QJctBUzi3kdbf/9NbU9WT0LiwSkbAsApYsvG8AX7xw
u7+WszSgP9FYtBroTgxb+BkegVp3gOzcwBmD2kho7tuZ1hniWWZTd70Pa2b0
7iBXQE4NeusGu9c9zw5CgpPOIjIeKMleEIxUbgMBr61EGJmU9Nku8LAiiAse
k9oGC7SzXWHHrlQP1hGMphiRKpbpXAp7Rw8a1W44TCYRkkokULGFgAKQJT6v
+eV88IR1lHCj1ylDMuoPL51cdhZIGV7pIK2osKrmSExJeEUrqIq5sLvx+tps
7jEv6dXE+bGUYIfQ/eJunJscWwxaOHj50F/TL2pObvneljgJPYQIB8xfuli8
AnC+JlavPEy0QKNwd26S6LBKHDbPUXAdKGpl09YTmoGlwIgChI4IWHkQqXno
XC5otY6yuyFtNKDwgoZlfabWRfZMUHeMBp1VAdhPo0lv5oXD08oaNjNj7DRa
54P3MCCMbj6gLntpg+Wtj29cRWthU4DVCjXKELpZlXGin5cPqbyAekn4OHW9
yeQY8UpnSTeONPZ4dbbSYdfYVG5uMTsaDOpmsfJd+C3cg3USSspW71XGrsCu
R+O0bIGPc9WYg2InnZK3SaQVvn20JGyRKS4a6MldWJCndMvGPWWeuOws6QWp
AdJwSZgsffyOou8zolG3cfzbQaKitj5yAXHds54hiK0DTkpIgFOecoJ7gnBe
i4V+AVIJerWUWyibSABJ9mXtxhItnZVIh39q4ePFlBLSMoi7KWnP0mLTlNBd
8DQRw1DLSM+RicJGPww9b5IhDragk4UM50gXFc+Fl1dJkps+VCvoLQlzVwaR
tTEQLqq90S/EGhD5BbxiYlMJai6j3EswYeQZGRUIjw6pCm9leDVhX0yTschC
zWWX+6WEFfH1zFq2An7KNfRCXG09d3gVRmzn4uIl1cnjrYLLKVV/3A4+SBvQ
EXO8JEGlqaLBF88ILmG2p8fjuNna7Xi+L1vhM6uuFzVsHXBakfBauLkieEsg
bQZMpS7O3Nl4pCgjLIMgniADqbpo+xLE49aFCqjquVRYVGejHJ9kOaW0XXJG
i9RTkQpV2JWcFBiSwiWD2gZQ0XHoGIQezYkUrOACbUSg5PGkyAWw3aPcYUx6
vul6Qv1SUFfadtCK4FNskPIkO4tOuI1mGK0OZa60AZbybSCDspcyBQWCshUD
Stbb1KbGlEE9+eU1yBpR7jc8ASkW3v5JgcNOoBdlfuFFs3e2sD3S8aoLLr8l
Y3XbR6qblgnnA5hJnOl5QKE9G9bxT1wDqSeZdWp5uUGlawkNES7Qw2poCFNP
LpNSkV+6khWZYvWmcoAZtY3fWCsCCYUicY2GC57FKDHEN+kraDmABgmFnqqP
JDKYQ4XSF6eOpGidyiOb6tfIoQmSrkQbA7Vktvdx8A43LuOkxWVyXgLk42xg
SRe9WJbj+PhdwGezzN51Ygy2H3nMjkfow6cBItTHMEi0qicK9ZS5GpoOr5f5
I04oPtAGkGKIRxWAkJQc2cwfT3Bv5zxfNhOzUILIOCT4EWcXN6I3WasrRycM
mS24+cihJEWqUCdWUVTyblMEWt5CM4UGLUeQ2ulAcpiBRKYlrfNHLlBL9Hw3
dRlRy9Itpn9XedpVZudPM+Xii0zUyBaq/nRSJgojdAuBSAxbBjvDizZd0AVU
42vR5Mjz/pLzrT95wURSfYQPZeCQktfw69buRddEGddFMcxkkOx7sWNxJfy/
8zi/MKxeWZiMrZpdvGxLBzeGCb31zK2aDZvXVetES8OmsoPeaBksvHxD4RtP
km3T4ws49FCAIg7F1rDSfkWpn6Z+HQ9oCNvJZXmLNDyRD+NoHUeNzEB0NjlJ
bVLveCMtaUWpETTksVvOK2hhstjptNTGbIOT0sBsJiiUo+bXKw/r4jJd2gIH
WolXMWM9Jq+mJ49xlc1wORmKoG9kOmkSppRHFw7BpI7oFHWAlmC8IJWLFeGc
v4LYJnK7k5/LcBLdBXu3qXJqQm8NnyWPb6+Fezw7L9NCfpWvpwggecd2bgT/
Ljkl159iETYAaU9Ag56wgibIgycBEy9SQ1iokHIyBkWZ3LHgJ84TRZNJAcNw
l65BgnoUfMhE9bmqcVgTtCZKpMroe6SCa1hLCuahyC5LX1gxuo1cmRNhiLW3
N12ByQJLJyKSDihsiesvjj4tCoZDegYf2Taa1GslG1dYbJUvKHmL5XM0bLOI
uk37mYFIuftqeYNIouZX4qEAp1Uq9MafxGpd7y8LX2QRHRU7U450PlXzMBdt
T/HUKbhpBAoQUyXW4jIcTJiNUYLaNrRJZU6BgUUd92o42dBWdV82diLgQdYC
8/OWYIE5CU663ceU53rZ5aXesojua1mRKKDMKUUxrMJlD2fVBXTaaDxgBqPk
hrECLIrHcJUUC5HCp6otkhQCRW5FJtYsFdQdDSi0LODVFUdub6ypjloapuY6
7pvYym10JpE85OBG7NfpCHx4hA3zeD0/nWEBJJDt3rhXQxFcVvZIyAImvsji
oSS4qQZ1m2WItaPHkkiT+jOppRSySjEKwvTLuEajkSNRN+o7tQpelznQDlom
mx7z6uTp4xZueSnHqbG9xePFQ2l6kCmDX1RHXgIQki+bdOYaI/CNNbzdxOAv
Y1he+DGJxvXHSScvJRiK3fVsiMjc0iDXMfWyVLouMi861Jfdck2dmRefbq4/
9eaFRORW7v2OpMwtxOI0/n8+OL9kWL3MMXnh+VhZeAWcXyzATy8HXpbHaaxy
cb+y1zrIqWvGRvclqexXjuz85NsXju21Brxqnr6osExl/a1Pfb20mqbZNdNz
Xo6ZBnlZdJK3asZ8+sUVBefyefMy+RbG1BX6ny/mefYT9ry0pnaXzPICWXHN
y64Y4he0XL0uP6/u1C0tcG4F5Hj9i9I2nMyysoK8WIupiXHq3Wx6fW1sr0vy
W8X5pGGnB+kuu/3qLlzJ2he+Lr4ini9u8ykPFq9jfNhOf3EcfDEy4kUH/Aoh
uPV+5qoXvFBlm7L85QJpdZxE9Tu/uLhkxu6q41z/uLI+N93hddMPP8f9Rn/b
HF8f3nbs0fFnN2+60cHmMsd9hHE0v6CDDeOV+zMdz8ijsT10Y2eHmdd0fDtZ
6Fd2boD/ZNeiU80ATjfakEyK+7R7Lxo3vjvaY6C1+AjTuXlueaMXpKjNG3UQ
n3YRusbx7HS0bh7v9dejJfCLIjgfoBB8umyn2t8FAgjCxwHnfnujw47wGoaN
U9TsYeObfp7YGI/GAjdER9DowmWM1Xgkdo1o5HkbpqjPS69bsqFJlJNwSNbI
mYYuM07KlU7gxoZq3PFuervMryxMMgXw8LGzkVFztVA0xH0HREiWRaAZjTYP
9jRh3s447GNy1jNcEfw52WlHZ5nbBb4RMzsJpczS6esu20AK3LnxiGN1XojU
9BJrs5z1jTjpcF3u1wu51+kdKUoZpDWoS5i/FLG4Hv7fGZxfDKxecZhoansC
2gWoCFI0uZyFWilzjULNuldVqNHgwnLB3NysUoNFcnQByTuPJin4eq+Vb8NZ
Pyqa/KZLqkuY+KdRCWMQ6YXAXoVpZNo8xsvv7YjSHYIey0dVMVseChGZo6iJ
d/MY+jq+VYeW+RnqHeVdA2rBkSaMEyIoNPYkJS5hkJywc2pRIlxUxEkZrJYJ
jXPgvFXrQ+5o/RXh5ctG84yi4gLaAC/uPbuMxGlisObyGvlI3O6kwbCOWpKL
PAUbG0io9eEnqKLAugDqCgXcTjmiq4NuTEDjzFzysfP+Fi/GWyBEc7atZft7
NmPOutpMNpOO2Jzc1CmCF138iCJodJKgBD7HHG9i1ARqvjG89eg3vvDswr0R
gTAIml5LBwNNtD0WR1wQhagJihFgR3Ug5DumXygQ8zaB08QLMtT509FZyRei
DWcWj58iFUJQFCNXACe5LHVDUDRT8piydotXZkgXFVYLnlqu8dmpf2DmNIiy
uu+LULuRMjpVz4LGUWkbMTgr7dy7gqo+WjXhAWM3AhFr+ggamRGnEN1I+FNp
mAOBoieRlrLRYOVy2YS3xoTU8Ey8Nkls0jVhZCF2R0RVyznTQ2SHzoflrhFB
0Cl4wEDR0F9xwfUeXnd4OH+TF1PZQUHn1OtM5WjfiRu2SM4pDMHGkI/zVF+k
IGr1pNYlr8Sp6DNvc/p74Jqx905JEYFK3bVVBL1Ym2QI/hxecONEzYam1aQI
MG5xyVB2HeUFslgzycpLHsIEBvBlHR3etHBOMYeplpE4uIVzNixyqcM6IuEg
I4hexesTz6Pqaknt5qGhaqRIFcYnG4ROTYhIqbS5KZqIyGih4tBQOFJbDtlB
P2Ak5F3T2NJ4G6m2aVMx6Pzc2qQBeWfX3DbqbSU4vB0TUEczwSE6zWEtydFw
cWAd151UWeZghdvTwzCT0+GtUWgE1tGbN64e3cJcllW/94oyGuc793XU1ftQ
jQpUaycHdzC+L1JAV1oKdQ6UXTlC7S0KGN70CxrQ+ePNIboa9wL29IYnd02d
RxN1CprppZA0pPFK2rl4jiBYsLjkwZ2GZuFgAUMjDBqGDtcb/tgiGGfs7AET
lQB0g2A7FXcjFfg2DjV3wywWc/aIFabxqS2OreWU2eMEXrinDVUTu3KuQ3El
XVBo7NPO3w5OzVviM8zQBqMhy+1iIzPijlLon5ryGJj0dMyTxeOiLHX6oXbT
7UYkRcOUxJNlYcFCF9F0NDU9ifMWCzgY29lU3+ki6hrfuCC6QEXW0RYcdMAa
GxHPOTHfh5o679xwqTFYelNgbw4tg7iHuYZfL+ReixqpH7HLCoQLSOMcYP6/
2LG4Dv7fQZxfOFavGExsXl53I98XrlQkQdzAuNi6GpiAoytwRSJBJoTRwHAx
BW6j+6ZU1L2QmEir5t0LnCU7vf3o6S31S2HzAZ0VBc4DxMWdeycuGY31V/QW
JGkhjxA90Aw116Tb6o7Xl4Z6HoljxxdQXeCwWtFpZXavm3MKq3cOttKUZmzO
98JapQpzjBxH89lylDthCBKkczz5/Fyh5i7F3bcCSg2MG+Y1S9N/LtGRXl0y
y2ivGyCMqnQRC+RFR7W1x6ctbXG4F2hBwWR+4Vkw9p+iCWgjA+uo/+nBT+9e
yDD0IWAyetG5V3muFy3CLaWkpZjyYgThcON9HTQ65alq4Za1DOVjFznGEud6
5Z25bR8tOCh0u4feljm9GNOAk3OIRm+SbvdS60j54m2wcaZV23ihR1Jsuca9
mVcZSlgkHeoXKZUXII0vz+WFowXruIujuzoOn6ZGh5URiY/KoxuQw0el1n2B
DlOumYDPxYWkxgQgZZkIFwk1aOBb0K6TVumMw8Cf2wPKbuqsSItcHq3io/3w
vO6dDwYsyZR/JDUixysFCPlu9RESRNKNzKIQcGikZ0bppBZI8hchtrpsNEZL
QNrLImPhI+Y4xyCYrpZUhsxCV0vIOFUEWqhSG4PIekxJHhmcudOeOihuhEg6
wASUcslis9xbLElMo5blO53h/tMvJrVEZaGCDsXuKF4S8YgwNM1Tm8uH8Rw1
DpzhlLSaBbkOnAQIDQUX04VKhMQkN6HVkibG+QXZie4oVFJPQyleVq0appM3
MOZIQ0aSU7xjM6fIOhPm9HbhZjifwa7EdtdV70BMYZy3JviGMC3MOQ1BKu5n
SNYWbh5KBssaudl0IIaXKro30A/BZX2GHlrbTwFdJN9D0GlMb/kggwuJGrIV
+zlNjJ2RVig699TmzgH84WUgbKZeLqWwJp21EMxSr6Rc8nr3kbosqn1KSGqB
KEDA08nmKewNMK0gDB+PJvqBFiEztaR+qYFJC5qIQtAz31gPHSUVGUr80Lyh
0xOtczlyT31tgjTHAo3bFazCuE5584PWBciEpObOvLPeEiWJ1j7EMeK5iCpE
EqpILasXPskUqBkLJqLZySBgRTKPkKejpxe9emdaJ6B5fekEc+08XeGponUk
DjDA6eeXLaJVXpKMtAEH4uqcLtAzPflihiE0UEu7zCsvFX0kPhnZ9iHisVVA
taW1G2m789+l3mnv7Z/LjtkGk9CNUKldNCAtC6YLHfPQG35oGuOJtkTq4CKM
zy0oru+Ts57UnXrNLsBO63hv1V8XCmq/4YW1fDy1d+9cWQwcMIrzCBoYZgGS
YIIkqbjMcHXpBbomJDVTBRXQexvqVSw9XTR8DYiKxma04qBqIKsW65IP3iMc
4IP323J+LvMKZzynKGVUGMG3njGhOOJGVksYABpbD0Bjyr2qzCKMUDmaVPtk
W5HFu+YBmRYjqB56iNFXWBfHUu9kICO5lTV5cVWk6u/g9xICcD5m3AK3SFwo
VR1SMukymxdyC5qiRdNRcpEyaF6/ojBBUweGS43zXpRWfA16UaogvWom6siC
YCQRdo1FW0is41VSrAVcnReOhjjlzaT3ZmC7hZW6kZBclPv8KabmAkQxDWKF
9gmlGR0pxL+xhA0jQwOlD1y4gy5QjXrqKLU0vkhTcBZNDnXLvfRv1MATDhbo
2HkaH2J9gbMc63kDUonStgKORAdtD+3e0MhMe2NRzyA42k57LyK0iOgpEIiX
JDuljAeLikLPI2N8Ii1lHxdZymvSZOO2tMq+gmOSmHlj40ch6DULuEag37OO
RdpymlFqGfvOlUIwl6JDwW20NqWi5vSgYt3HCxxV7jCTXITZBSvCPFw/F2dV
lMRmxIXzFzWCVruxRsc+RHpO9841xPco5r7Qdj6ThiwoBBwpWm/2QkXuWDjW
2uBRCvQydZPnFQEEJYjP3tm6jqGwUgTtSmgO049ThoWOveB+hi8IErEAu6DJ
3BJw6lGwVOuY7bRe89ek7VLO+ErNvj5MxG2bgs/tRyZV50EPJcwqSymbvlzF
PobvV8QaFNOfmn9uXVwP47pDFtoCKa12be+04zUUNQ9FOERPnIQt08BUtO1k
sYzs47fYCpPGpiEwRzv7QAniXtwVsaToQQNHXpkTFjWs/0BY4c35kpoBPy/t
KxcpR1uYrNs7EjhEIek2JZFYaC5TpoeGBLMj60NJkiVPz3XcHLFS1TrVUb5D
dtBHloxMgxZd8YJWAQIXU9SKju8oznVSFsy4XuMLIt96dpw0tidCgsOpCFLJ
owwl8Rd2hThi5WIpLFVAOBMaS/2UO3mReio3jdgQU9upJbKAcsnqtDADoI3e
waouIdaSiT6XlzZ5kW2TajJVc3mJBFZ4Uwo0JIis7a2JDzKaa6jlCDVpC2OC
p4CkiTnFemtE6mkEzxGq1yH9WwOQ4i4ygkU3ygqvfai4eGElSWQqaridkLI0
5sWaZoEjKeoKl33pIfyEF3EXyIFyp2omh+BOH7pTFAhTjTlPw6YSHKeIBJ4Y
9vRRTq2U4AQRhYlHJYmnEZuydpE0Njt+OiKX+JXu0iJVzLiohk1TxysrG/rT
cUk39vmjCdeK9puLTnnjhDETIsk3TjCBBWcqELHwhdCEqtdO2TDpbzIpckZX
l1M20L3FsLp8mwwlhy9TN8ivgC9aNB24IFZ5fGFpnVN1Utj1CT0xICnzFY4J
p6yaTyfRRF5PrZ6meeKIKW6TIJckbMuLT8Ml7f1ULZi6dwLnKSrWliQ8+/lJ
Gy4V8KSHsuQ5IcXXt/nqYnhr478sMJmi2Qk3VeHrfZiYICo4V8DktKen6loS
5zqOVwhfsLZYR5884tI+fMpQBwxDdocyMUGJukk77ftJCeoXodM+6exUCBbK
imxAYm8O96nWwnU1CJ137EFX4zi56MRdwekgyr0xiy8Ff/J82B2t76JqO3lN
eeZkO3R5oP3Koje+tB7F0J8siGxzMjWz/Sos5aO0vzKgDXedasYyngXBqojn
e0+Cj7sipAmWwqThxYQml9XnBD2i2mc7MzJV3KduqXh1qg8ss2ZaY8Nlsucz
5Vc5YBER3hO4bC1WBGgiynMN31RoJqa7fC2fx8TbtrhlQQ5OpfOU+DtQOmM/
n17763lz58ReQZV9hT0TOJ8GmW1mWb7U8quwUS/Qvf0rGHkdMZ8atnZHzlSU
OB2IEzBexeZLp4tDTSE2udg/4WzmUtpXPO1gtY4rfV9Mh3KR2qHTN/r3tUJY
L9Htie3EskE6XQezYSV6oUNLpSfsGCMoVdUIenv5FooX95PaGDafY+hlwGAq
P1pNdLocsZMCdXqXqf5OBYVvaopFQfhM2vAEIVwp2+YnXLhUAabS5BQsl41W
YHUZaScL7mRFJgz1sR2uPz++Pm+PL44/z0vX2upMebIbBpnz4DUU9XnMjkEO
hi3O0+3jRy3N0upQ4aTOeE6m6siL8+BLOy+sMpNgQIvRzosZF3p78rqltza7
Tj3NujZRKzlLUYtgnutQAmYrKJ1zjNr69ung1sd5eW+LEMjF6WS8XT5dhEHO
28RPplNQquCFA9JWWcyzJ/dzxIu8YAq1Ez5OzjUYvCivj4AgI6LxV4ldEe7O
GNimpBs8pZPn7ekpFuVccleLt2MWa+hZGQTzmNGnEirIF8+CMxmTVj9V8TkV
l3RxQa02DZumJgQo1kxvGyRoUSlN58dBZAqzrVDO01SpQA7XZBinQBNiBNDa
VJ40mwqNmp7OdTuEOyvhpYBM2zzn6hBtS8hff/yXEyZBCmzAcxowVs8wFDly
ng1uJ95OykKFucFVJHjAobX2KdsD0VgEp3LSXUaexbnEaxFMKgJUNy1FFwQh
zfVuqppTvyGutZf7AuluL7eqrqSZxrn0i+4ltCsO5H7g3JuuNiTdYrKKtTGm
50HG20TaSqI9ypFOHchp1p5ajIj7bSXaOWvaakytQTEcrXmaW4sKnPKjdHJR
XKDFaOjEysqlVy4kB0+g1E4Y2daGlc0eI3A+xU+9PV5TZdypueLIqa+LarBg
0M7JBm4wtNlesDEB4as0A1NxL+89159RV1vYJhheAstJd5J3TR459ELxrpS8
nheEc7DhvEy3zoRCu7UqlCIIJ/Io8D8VboHXhz3P508eV2VCGxyZ3oeJk1Yb
I4whraEYogi+1WXxK1qVC9Ol3deCp5uu0YswuGffYf/hVFIsYNhUDapmHMQ5
5X7WeZaOuBsj4TihaRMnb40zueKnOE4mSMmlslLUt5d8aC/xvbGqVPMqtzp8
Pvc201Cz4ye6mjBFviwqzOlJS0cqYB0uimBV07vUFE0zIVZMbjPGjTvdQKga
yys2IQJ+W4SjydMdfUw4YDv3PGzRxBpaL6uD7FCsF7YnEHe6TrC0MKxwfDFJ
4Mugq/vDKdgnSUtCN3l9XAfxW2rRF1m3J7qyRThZ51fW9nZRnA89m3ZN11LI
srgXbNTrmfzn4Yw2eOftzK0d3h4/mjEIVElndGZ2zlEOzcN+2E46Gbt+dt6O
s/DgulU44wcT41vanT63oJwTPqGVbdq5DqKOjJOSCzBjf3IGNg6AsAK08qKw
zX76p8ePMCbXHd7ZO2/TaBrHKOkt3JQIMo3bI+aAS+LS0PUY7UCJmc94nG7W
KHTNcFcrODQ+UTu+kNwnNTgn1wiK2TDROc1I2TeL7G2BJOMW9hk4PUE284sf
eXguDDTwSQtpJXaN1/jbFiBzUgRBEClgogKWIxo2oLJoBvf9I8uawDcydUzt
RhlCLicZCTojXnOVn51TpIiQGkQij6DqWZ8QbsKBu2bn7iBHP61MCVLkdeBS
EIHwUaMDDv6yIERSMQlbvWV0fNYQ2hSyAupzbDPOHKWofim/KKwzjkswPmZK
K6CBTgS1VMm2cr+L1jadfkTZ51kZoubuRL4ZmKKxnbjAs5ieYxbPGriZbON6
wZ/K5kPFDSYwm3c+bTNHGd6FcbSuXWv8lwUmGR/lm+cmSTpStS6ClZvG1VTj
Ij9nXG2Fn+0swM55Ld6xRIT60kXbzr2h4itbGT8gPPpC6hdxjvVCBMQ+mnmB
CBeULJIEh6mzMQosszqRn6dhiWOGKso6tZ0sYoJMRxOR9Lk4SKUgegS/hKtE
JwLcCNPhgsxknotYMYvGByOzlHEnlqjSpGIqIBNE0TtJ8ORjqhSMVTAe9id6
OIzuiEwXQimWxKrXmHrAEuLYuWdNKIsd8sJM9QYMCjYQpnGtY2J0qeNla2Vk
Hiek2wwqysy3tOXbobFdwGcg3ozjKwLCKZmy+FyvYZYGoRhnYbFKfBCEWV5a
DFWLDCdpG0eTDFXAy9nNNsPEQzC+dVWZNeSCJcvYHockLdWSU8z5xuEgYKn/
wWhpjTz6LudD0KW4IGtmEQ3mT5Llc/cRchSa/xiyoBsyFAiPIoVU0hDLGYww
k0GUBgiW19ZKugNvhX6UkqSHcTQJumJoEZyxgHPVsH5V5mpYKwJ0XYJR4WXN
iW6ysARHOAU03wMJxR0miSV747GoxIFMMvFso188IMtImIuYX6SVxdFZMYjh
jBstHp97OU2fWUNxyaha74eInEscQ+7PUDhIAZI2zuRT7xuTtRJxdV+Y2Qpc
kllZFTupXC5NgUvAh2CBBFGMPGu0TM+QCyo1OVsRfZ/IWMTxgoykDoHR4Hod
iBc7ByRyVSKJeFLNNQqyHcFR6JLXxCW37TwZ2SQbPE8pm8CZcx6ZCUDxDSkg
ke1k1zSxZd5ouMdNEuvWSFKk/wmBzjwkbszIWXsdnIVh7ovsJYqi0qSSJpRT
FoKZtO7tWOulcONA7DjioT4KbWhJyP0bfTRDnxYpauVPyR8cVEqDhMxnohwq
ZhxTJZGRJHeGSUEYhJ5VV4osWgj+9NiceKxnvktw3hJi414ljWBjQvnHoTgQ
uo1mqXFu7BpfEANRp7zA+QWUZSJEdAs2S0l7GSLCChuMjhic1RklvmLGyBwJ
h58B8j7jUCipVlK+czJS1FxwrKS2BI47aGlCQuQN5IzIPwvcICGl8ZGSIyBu
BumbZGtjsxhPZnDQAPGdSaQhL514asl9Jonxk4iHi10MO8DSqI92l4ApGQER
mMF30BiPz847gmi0HMFlWQjV4ZxDz0wgmgXaU3bImhQpTPMioPQIzy7wtCK5
GDGcsZtqPL3tnC08LIFMPZUVoJlb6DKr7gNnMKSb8VD6kMsECjKl7BXtnemw
oglewWkolg7RTEpGcTPcCF7xxhoLAqsNRR8scmFpxeZGxdmb7UaQn8Fs0SVo
uKewTi0UEjZKHNEV2NMHnGw6gojs1zxVgQqM8reR5CxloBNXHCjSyG0NH9WL
oBVNcLwjqMVmx1wLdBtsno2zF3WHdDsI+DXGf/lgQg2DtI70pNUZq82VS6jk
TlfZ38Jybrq0FM78yb4DRelJ3V2WaLKTXJ7BQT/DJnGCQG+pI0KyZ3mvU8yK
iBcXKf3KE3oNYdSpOQcjx2hbwEGgBQVem9RQQGU/k7f6Pdm5STDxAeuoE7YN
PbSI1G+0fkgenbs9Hk0pDV5oiEX6XEDKpdRT3SYS2lP3RYQEyB1qq+PJdUdu
dxwwGolqa6shlVDODroX4szCa9IxS6FxM1z8vatBN+7NZChqLmINriTFQ+NH
mNBJJGA3cz1B7SjSAeedFYCdlo0xrK1X/9QQEnWxn8mWMKrMtw5wnXdyMiRa
Q1YRJ6Vt4BR22xq0bTMnuYLM8Z2F7PP6SxhSXGipLpTTVqEhN1FZuK+GOKiq
tDp4GwaH2HqwDCsvl7LWxs5zVFQPJd3r8FJ2SMdOtrHLvEZgvklwERF0s6ib
HaBr1HfYj6KGtlA1CvXRbkcoCeQZfCd6wwtKFiCM9ctMUQ1dimi+PwWjvRF+
iMCJKTRoMLIVRM47rxr0QCfmBUm9DwgMrT5CUghe9l00B3I30zMsOEQP7ys8
KXhhznpixbqRSZlXsvil7iLpgDQhFNOycom2EKMcE46vz0s9CSFA6+hOTA1P
WtGAyZKB5MK6Xy5/oeexhi1YostbPISlplQa6Vl0lrXIqRWZQ9O1pAyMM7cx
6E+gtxRHirtzuIth8pEbauokLlTxrfTEB9BIWCq4OtEs52YUNNRQ2RSFGR22
cZzzpF1eOoWlja12uTI23hSZJY2ESfXKhdrGZ/Uz3Z458Uz0uJFgnacBXRN0
THONNATapUZ6G5CB1WUFstiZ6aukVkqzNjzc9jtitEUp8Z3RvDQdUgOvvf0w
FZK+jjNCyqhPRzxBp2EK3MA1yXHRcK4vZDYMbmmLMrA3cAAtkKUndx2qYIFd
oY1kLWo6OenUPXfb+Fu1BhQY3pKP6NnGIsvrIGkYAlZeZTgio1MsdJxElJ6t
66H3jbqJBCq6+GhnON4yo1tmBLggprylA3tEOpe4OStH45oowg7GlpbIrpc2
DzO9hs6EnRCVU/pIXPDRdPkp2x1SB6ddpv/1QNB1JTjYUTdCholCFDzfqfbh
/IzIPyPZl5aJ66nYQ1BTFaDawZUFWYzZpQ+RAPHscwziXkeq0CYbecHtWWyH
CBwijADewHfxrhFn5dlB2IsgiDKMIqeJzJpKZgz61QhR4Oo8lXUaJGZxZIvm
tfCwoYZBOMO1W2PN1U2Z5mQTM2KVj3mqB4TOS0DI0+KtbUTMFIRAfpY7f1QR
NyTZZg3lTD1ihKt5C6advEYkl/NxroeQqgn858vy9kgNI3nX1bPwvWjOnZxd
dUunPnZxQOJeoDryTrpHYeYUvSNbGn2rMZ3rCMi1gqvw3XKQJJ2Ehd/mEU6P
/7LCZBZPynmljaNBU9OSSsQkeic/SZ2COFtxlBzvxPHUic3DlWPKRFhSq+N9
ZszTtCkRXOBVni8cipya6eFAldk3TxdH0CjpBF71i42xuKBTcvoxIPM61kRL
qCgZ0yTXIpHiBn7puPMK2BaWFDVFGmziAw0ozUyZBWo/SXHDN/LsHXb7E3pz
MS/A2CUG+mjTBODZeZ9KjNdVD4OWycbVIbpWxJHiwmvzeKXHJYRV5wIVZykX
Qn/IFyupRDEi32ijINIs5GlY2YEeADNwMqUGIxC11EmI0bIg50QoQCgylKk4
U0/FQhmtmwWzm2xDpx5FhMtY8CxRqXjHoALQb/dcw15HNlg5r2Elj4ooaA31
cXQBGK1CdnQZK/FU1xHaNypD9K7COzzsEO8Set3UCOwdWautb95RaYQPMyhJ
zrLYB9pcXZ4o5IhgNUke7gRkd2iWsAr20AXo9iNoKaHYkoKf4k6neREkUaLG
tCFf8DwCvtiGXpo6RnaSMNmvoBi+aMXGXRssCSk2M+nzYIlQ1Mt5NQmkwgMO
CUcjXqTVRFyYZ3k5GazAf4pFqrnCQ958GM0ghqRNNqhHWkoXekjgMAEkKWIi
+HMEGk2/4xry3c+nZ+Ul/yOvZoRYHeWknHMCQapeZBf1roW4dVzWi0TIqwAa
lnYS6i1BsTNkeiOvVQqwIxr27uz6aHMoAbxRPFMb7GSXz5fc4I9C8yY+qmxO
RTnycMwOrbygve6DpZoegyV7MkUP4/7GiHM9dcernfByFQzzbAurdtznGpkT
Kl3lHcdCAQmMnUVjHAHBlrod0CDcdXzbzPQMTzQ7b+aH4/h2XURkKkDZyMLm
wpjCEjODz9vb9dQFxdS1MfsR1tGe7F1pMNuQvSvGXI/X25WOfEPzNhnSeTV7
iXB+PWUbT1RSq8zrOeE8eFSGHoc7uy5tKM7X4+ikUx9NYU5jNvOJK+ltEy6Y
jm8Tbi/tobc8chM+itFZ8/VVkqprJXvLmM4pdrOJW3IcNcRCHp2oyQGdr8XZ
eXS2eh3Sap18STSYV1NM87/mQAhrkXTryQHn5nvMEYU6CynNRciwg2vATr4X
UbDINolgkr+XhDvFcU5BKWGfp4vLRDsO0pxQjCkay8VryaaS5ACfR0j2eziS
qc0B5KjYU4pRmD2P1uYkipTjW3zSeXZqavwKjT9fTHiWHOKCYBWFMNpaUZqY
MQMbhpqlIqtWNfN1nKKarplPeBqqZOl46SxdFgTzsnHW7YzEZx5Hg9duPD5N
tCwhpaBHMc+wlOPME2cqxyVTylpvipoKTcnkc6kdmXs5Isn+IhZe0QoL15Oz
TJnhPTYYWPHEAx0SaoIVTS4Q2eb5NNv1pFloTIuA8L1rxJpMLYzRkJUFayKm
VXCnIihDraVG55/AOTS3MaxxnJLSE2DazyDFVViBc2rYKgxlkNKYE0oyKsNa
8npqlinATxAJIda4RxAqSKcIMCVc4W3gZ4GqkvaUsxOBOBHu0p4T4SizMvkS
1jKNIHzq3mZeTS0vgkREvYoKFkbmyBbcWEtClRBlhLMjwZh5mm5eWTurBi/5
wziLC+uJrukKM55gsg+OoUQN8uIi9/9NSLF50RU03l6GwT06J/iZvUimJjvX
qWDRtkAmUn5RhSn2dYmEur+xjgaXw4ZPJ/igsV6HenrEHAteWcLP1xEcvgYB
Kv063FtLZbazDNy8qgsx3ajHC1IQhqXxT24h6kJ+nq4/gTCNX6yspwI619mV
2LE7DReUmJywLVgeHVGJO6EJJ1DNt2e4ymNu1MrznkiKE07llWZp2Ak3A9Th
Lg73yBNbTNUmVe1T3uKYGQ5TKBlQoTkBdCeYMI+DTPoVvZjuuqdIyLmTJypZ
WiYXqZOGdVCndbwRs8sKzvuNRody/CfXKSDnmpOuibVJXhyxXdO+6BpEmo2S
W+6pmpSt4+A++5wvMNbNMGzi8DpjqN3XqNWNwzsWQQeZyCYmSfvdCAh2cczT
NezU65vxPBUjs9zbS10k8jbjuM/T2FLXMSer1lbU1uwIvB5HOLdBpLUYB7Q9
pUbdIcIMNnt0HCjxEdkHT89tna5BtOzDSWqlaF2feOjb8kdY0s6J7nLP2C/b
NJtjkJbpGtkV44sXc8rTrDBEpJh0c8GNqchzIUfmrMPZqoySWGthGimNvIC8
SMgg+NB8TVhTDLZQ3VxbYq5LBxvmDCalZ4jor5jzWjHnfiULDimncCC+jrdA
N9ZVIDxT4kKAVnDrMCwl6Tk9fTgOSPYr85kY5KP7rrYpq50GWHEwsRsEbvQ3
SsGcADeGBJdBqrkpBtcRKiUeQcip6IPzU5/8Rs1fMzcsFioaZWnAoy6/BaON
aulRC1jB5ZinrEvF+HMMpQvAP39MmJb+EbtANToLmhvv66Y1+Y5yxiddcOIq
o34r9ntplmo+Z6EwwHlqUeB1mK5BwuL5hdeyAIVIk6RAagNiuUkLXm2B3GaL
Ju4NtY+ha+awxyWx4fZmXhkwJyiQnoDX5IhQCqGPVIltAz/fbFhFjUv0qXcI
a5nLTJUqwNyWKSiywexALZZfXO/+eqWI312ppyBNwI0x0xNEwZ55PMnVKnQj
gwgg7jMd03YwKEHWEuuYWVHGpx9tMGKcywi6VZnQEaG1NqAM7dwgxUfna+oE
grWFvCfCr1tmHZNKO9KUm/HBB7VYogxaHThrkngyYwUQZYvvQaEK+Mhripoq
DOkkNTAqSoSkMmdNcqc9vIiSJbLI6cSmLk2qETTakEoQvM4KY45zJjzYysT2
yIb9c09q0M/Jo0S14ivaNWdWGBq8DIFK8NLPEwGKZ/RGAfJqwhmtrQU1IUEV
JRaxyKpYcQ01SHnFp3hSHUEgbHA/JHNTNafF+4zv5ZHPQ5ZRfB06Mi+zDmT2
ziftnCgaaCRi7V6H0HB+NVqtYkCpM/GEip76woodMalU9Jjn3pcydcPFtoEw
rnf0Gu/qgwITkxl/ZJz3ouRU0X7gxXBxbK64FbQegxpsZWC12CSGz4trmDlT
HiFGUjHXMqmqvRYml24an2GJaoOGim8MsSONRXxbkRG/i/cx8IQi1e41MBmZ
ufZu0KziC4K/a0aAUcph5RYxIj/32QsLKS4CderTKF9Sg8QGgyRzvtdCwB+F
mLIBXp3R/XIZUp0nGyjT13S7Omi5Q52SlrzofpAmpTfRptVBqElwdiHfi+bK
7IQaD5Sbp2sIZCtGaz3PlZQbSxMTVW9EitsY29HilhLhEO7RyJId1KXMwoyS
TUXto2oS7Q+SS20YGicoTGgqkEQKKScd7WyHtgEIxBLQmOoy8swTa7PXE774
zvNa3iLKmNHGIfLbRNYvSS/nRaeRWWwESLqUeLoR9pPIBKpTdUOKCf1C1jQF
4NKZU7d5TiMTsYsNVcpuHn9sRNfiqWOYlzmz4MuacW44oHDcvVurPaBNciHm
kaKKUuUEgwugzTmZ5yad03kacL4mYJHyZA9HCm1MSzoZqMX7dc7MRMuQOz6L
XRMxNKjncpfUQYk4kCcjpWFLyK9Rm1j5SbJKk/KLYCH4T8sfqlPrJoGT4n4O
VZQ+1mcRuWjiIJLmeob4Ng+fho6dwByZs1aoiXu2z9zwSQpZMwu3F4Ipb4Vj
dpdFE9Ik6noOR+g1Um8ebkSasFMS33kaEG2Gv/WwipqxVZAsyqBWDAYmBqkr
RmSvaGCRLCRlwmo3VSYq1EZSmPNulEdMjTY44Am6ehBN85nJMd1ct7XfkHyM
EdddC+lU8/i0qG/oo6QwKUO/Q5hADyn6rJ8VZ7zXnYOTzBw3I5CHEEAxQlx0
iaEXc00JziLRkIDQ1TWUx0MsTZE5Lh2+ZFA78z5qzfhrFqswoskU4aLMGruC
RkLM9Tp61GDqUcpYnAlelwXg38ASvp45wAu9tUwt9BYjSXuVhMJnXUpr2Wpx
+zrMQhINjhnnfQTJEUeGkF9z9rWASEXAycbdpi7KcsFtZ4zYmt8qhaxahSfX
JCAKqX4tIc4bBh9TILBUt0xRKMlsyUQubUZydjxUQONSrBqhGtq989Q8U+fD
FGoEZ8p65iFW8WywqEQ7QwuRlFwi7mnC2ZTEcx2MpIlMUubRu5bQtvxy4Qps
ZxiFbB593qUx0XPCszSx/PLBWuouEyViknI3sk6RHTJLlKSNaFeiF9kFwFmy
xiqjadvailKXhKTbXg7wzH1NSrsOdzW+/8b11FLDFy+i/CLRkC86kgCCpWnB
rvM2hIYqsCDTiuMhf9dELUiHUY7DoZLCtBGmxWg2+ikv2VJdCxnE9BNknIFc
cfj2lq4praLYCau1stDgcx5chYjW4xRKA5O2rzncEnGtsGDv3HMf1lLr5bTn
LoKJwUwQy9swUUpDDjdpBVsYtEL0HLqXmvmgP/RRDFOcXajIMeLSLNrCiYag
z9d6o2ujiHkqhZACS3b3dE2zIyuJQqyiMSKqEm4JiAQmTy5P2JICLsnHqOQk
BZqGXh205IVCaYHAc0NPK/YFuOHi8ee54qDu0LPLlGKk4UQVldbUzkE0zF9R
FVOkuS/01gQdgWkdWhsj5bITK+DgOL1wqIU87Uxm5Czzh6SyozWDSlQgmM35
wa5s1sn3oDQF5GjiW/cIUW6jI2sHNmUu05gqAnVHTD9HzxTJKaeqnpSBCWwA
CqM4QUjTOIh2MXXsNHKQzfPgIJJanoCwwhxfzPmkaCOLeSseseCI/jBojRwh
Pc/Decaq1dtVxCQ1+NOmuAV4Kj6iJ6rAQsgQl4BzSDfKDgSlsi0ipprPPrJO
RrT1lnXAjSHKdSpEMATrcO9tMXD7M6zY7G9gbOUpU1SSUUMftTS4xqxOeeSW
y1yZEolL2WyxvMU1xbDQcNUiJjmJmKARgk6OFHTNoYcm3CY0ays31ZcYFDX1
+OK282PEOTSB5FTyinxnA4pApBzk1FsT5muOdaV+iaiUPgxCylNRb4KilpTK
61qEK508Z0sqApxrfKdEhrNDqqG+EEdYcluZuiZVUKHsjt8YbHYettFBRw8w
ttEYrvVrBYc5FozPIciChmxKMJ7vea6sY/Vw8M/1xZoHDITJlYvxD+SsJD2k
cJlT5+FewlbQKNkYDNOQ8cXneqWQJIzwkmGCWGunJI4HlrIZrCEpyzAOX69S
HNJQmqUk0RyFKH3hZNLMIqYZwFYPpn1TRHBNCBdNV9LS4PWkp00c3PHJ2Nae
Bra30UeWehhJLfS6yoIho7M4FwmVKHqe/JWJDidvyzISdZjeZspFAQmlR5E5
D9bymApa3Va1CldQA5plKkNjatDBpfOcDUiDZIYLhlkoWNWrqOVmNYY7MV/A
p0ltotvW+cbD69vy7EV0CN6QiTEZ9W1UtnAZM3zCHQRCyZZrq4BMkxZKLqkk
vnhlRLurTUUU3onohAoVzmfae5PPc0VtCeO0OnWrVml6iqkERc1A9TcGjvui
Nn7EIQj2+9tztjkYE8YPjvAgZbLkxKlcw4yh2KWAij0TCVgTOHittTJDmnHL
F4RKROG4jTNOUA0WuiMTubZWa6X6BHdSmoRgFQTjqtHSz4r2kvJMXbaEcjyA
wy+CgKwzAwkWccFPlpk7LMOTVcHraX7K/oO7E2aJ4nYwRsRcerDE7Ux7MRLn
b5OLAwjNseXQJCpFbK2+R/NKkpdHSCjWwFReJQFbXCMzliUgGSkRcUKmtraW
dx0n1wIBv1UyBI9CCeCfWkzPMwcY/7YgiZAt1Quud8FapijHohCZXG6CvxXJ
WW1YA1nzhbqBKoRGDmiOb64Oob0Jg+fwcQaJaEcDbrMrb9NELhgVpj5nJLXa
BpRCuIUtLpI6QsRBk05Ck/Fs5SMfP5ikIpMSp4VrgTAsUEFUzxUZkfdUJrJS
BXjXBEukViIq3XhbiMXk9TjDun2bRsFGC2LOdxX71czV2/yCLDhiaouLzydc
VnxuK2BUBp4nw8I47Ps5v002n///pZphcvM8jINvYv+Rld7/hLv7NgQeULKT
fjvT6aSJbVEkAIJKXzuo7EDO7SvDc3lmdEzm/6ZGLtaGyPqzbaenugJzPBCQ
43LjWOavXRGno1qFEaAKb9DxMGN3bTtL0V+MbcnVT4thwae3luEFFzZ43r2z
pmgLsGgTvrE32UL+cnsrgRV7iUpeaGZpNtH+8Gmx7hTG8A65ebf3Te/7v+fw
UZsvtubyaejtq3f2Ter+oWsmkOZrl+33b3W9cxsbbj8E3S7OvUDreUVQvgty
kg5Jzqf9IJPK2FPanzA5EyFbaFne+7pdUfuuqV0/PaQ9Nj4R7bYFvFbZD1IL
rrttHgJYF/B25a9SLRWf++t3FSm1WUetJfhEi77wXduu8rw80xn4cdiLxzi6
w3/Oyc+6+mpmjk19W3tKhOz6suVolSC+eQuJDTBS6vOxu+fo+qfjxw8/7J6R
nBWNyE96wrlkpiVz7uG9ZvvYPmcyUWtd7pL8s8BgV3HozFEb90EQQJWS+9Gy
/tgZ9rREE49Dp6gI7i0DuT09oPwi8p8NbueykQVCNyq32PVpCtwX63GVnrq1
LnfP/E3RDx9VD//ZWETpTPyzypKf2SKpOqaFa5rQXdA/LG1OgfwEThB51MmW
dwUIP5k3uvRWkZ8mTdsblzlCJe7CWPv92d5eKxaX7evCwkWh+xYi83zmJy29
e/Ki8CsFKDu3YuJduNW68f0Qb4miGv1UzZtpaKOiU8vlBUD1GzOrN5h3K66Z
p0xtKt47+OTet2GHBAkMWMJPOCSD0ytmnF+cRCHnxwKksBw3GtjhAUedddxg
/uCnizuKzLCOG29mgC1XdigeQZDE7Vx9zoct795fxeeGs81f3axyZ+bPBWDH
5NSzhLT03A1BttFuvCj+DNeH3OJwmLcf1LRF1jZJ6xvfQ/oQ2oWiJWPHsty2
WaNTb+qyMv28ncgEuT+6zUczeTiMTFpO0JvN/r7+Nx30SXMuWjefMJk13Z7j
rQNCmzX0ponZ9nifGV65OyTZP2Gb8L5onyZWFG0y8C977dR9uca5eg4pDMDd
rl+VtN37Nn4/1JbPdsh34bGtzz6KHuvC+I/sHZHe7wjOPLSZgk9rTbD7rjWG
udKn9dy7SH7aY3eDRpII8R/ZFu9M2nboeP6zmdLnoq/zy5HP+fd7tq09jELb
8LYx7BZ6evI3SVgnjmMX20M8D8E/Z/6838jH5drrJdtzveA5S1sYbG/8GM8d
PJ5TcbvEeAqjQeJPSxzjq7R/FeTjp18S6vuFPoK5pf1Pyf9/JuSOUHgxv1lx
jX998vr6oQQPQvfAhW2of5XQ/4bSu6i+efhDhP+h1sfu5znab6qwXfQbbN/h
5CGYb0DyfUIenvCckM+itKvpR63+8PyxuX5d4vs8HDexxV2Lun5T5YdVvsz2
NxX8+P6X9Glx3unSNrHbP7e13hblm73ER2OfqLt03UnWN+98zNhmC+P24d9s
/CO7txl+ePiXdf8mgI9P2DLxTmY/pHH9c+Sbn6TgAZZPq9wk+aO27PIwt5fd
le9POXnO/12E21o8o+juluckfNS6m4/mw9LHcvvvLRHMiE+/UYa7bd69frj4
odDP+Tny57ncD4E9XPa9Ajxfs+URw36Ovwc/Njdu731Y4suqfXzzuXzbcj/g
eXvBHY++hOh/rv7Hsj5s547+dzv9mO11Lx+pVD994GrvM59/Asl27w8JOXfn
Er44VejOtd7t9HHdD9d8k/aPPw8P/8jubfa+WXH7+5ukfRS350U/J2d8znCP
anfLv5+53ujgx4dVHrL9111/T+Evn/YnwdmW7CHJ34v2l9n7uNMW5HMkd9m7
o8Nf6Xl8Stpz/v+03Mc6PuDnOZ/ffFovSueH/zxGLj14sfqCGsH/Em3WiWu9
OaTG7CPzLJV2POP3TbeVX81/D3dDKzpOPfn33n9XbrrVkSGdY72m4rlpSSz3
DlTzN84jt3n8hj284nG1GWoe/rJjKoy+9OYQex7a7JjanR7lwEZssK6MJB+s
wrJZzP5R0wMICXiMV/8GpzKAZ/aveM7WvrG0Ixx+f0uZg3X8Vw573RXVo90b
ax3YdVvr8BZm04eDBxGjJyeLNbc7zaUL0mPyfeYwgzclN4rxm5DfmAferN9H
WyVyPjeNcjjJQG+QdIVWvZkILGIev5saPUWNOw3nx6aUv0nrtat7c+Z9kzQq
TvT25YSTzGfbLO86FmoztrYv1aKZ2Nj76L83otSVIXVvxNLrz/v6Vndw51QS
3shhI3i1e1sdG2hb/EtIk9H2VCDUwgNEmBoS7abvi7lttRbajQezb5L1xBjD
yzzPKJ+rM3vGHHOVcpiSBx+V9I+GCyLjUa+9SlwlLHmmevQnu4PnRlKBky8H
uOBQr+K7UZGj5aI8idLQHOfkXcTabCoeom0qOo89zVVfgzw5ckPzEak+/Trc
SFOGRpnGPlQnH1Uwc8ma0q5DcRCq621jxwlAKld58URUb45AAyuBpberqJ5X
aM4SQwFPYUhzmJAxsdlyO2OBfdjC9KtQsDU5EecQbWclpOA3Yi+R7WaHOr+I
E5d1B4kZDx/9/SYyQatelEL1ppuwg9BJaq0g0dEvYEgzYo4gO1UhJrEdVpwJ
PBYut4zJ/xBCDVrnkgrPC90ZFlTGq7WA3moXFsfr8TJmlnqxggLDyo6DTwMX
klwBKsQgAOda4AKrf0oYF0AmKsKj5qeb+NlSsYWcB8ekYK4KmQyVtkzKuEvp
WnR/G1AcvmuloSbTRoETt5M+BysOJJdiTCEZi8ZojLVmV9c0hJuQAKRzv0dH
eEQ+ycd9EXvqRg1BC0GSLEGZAwgHWWZcRsMZlmny4tzjbBE2tQGuZsO2ljYg
h29Z97JF/m9i7/5tbDn3IFWbKt6V4M3iY6l+qm71qbGEmkIkcB75O1lmLMVw
Hc3FtSimF+TKp719FyMX7EcsYWhdtAEY6ndEZkqbAsAzTDY4keLYPGdJvj1z
PxOIKo+UX+ZqD7kN3zfQRZKpacRtcHwhmrwQlaQNCBlPkaVdNrgKU7F4/mUL
kW1I7irO50oiDrN9colDsK3UN3++zf+a+d05xiTXeoSL/U6QzMZxApXc6eVY
pHWfXlXNvW8dACEUOTC+3/H5zOuAkpzefkNsS05ib9GZnpmlZf/Tt9nGzPg0
jfrhW17que8tWNPMjh2zZsSZwXQ828TOJTY2+saUBoM2jOxlIVjWMeAy1aN2
hzmkHo+vSwzzSP9tdbDuxF0hnpW0mM4cFWVneJUwWoNhqBAchX4PuDxWqJuQ
+G+cCzNhnicr/rtBDK3BmgXqvxfT/okm87CRK1H1lRNdwOExNu8IJxjYzlvS
S1Lm0ZuXPVJljMH/tngltp3JVIbfTtuwyWZBHZCYTGQ7xKphmEOTEzXKd43y
yWxnjQuj5GhUIahLo/IjJv5mqfKc2v57IpFdLLAqnAuxLw8pKQ6qcsHb0QYv
BLMgHU6VsWs1Gie2JBSHrjf6oMMWnr/puzb0AjZuqKuRXPsN6XYjGAqP0pcJ
H9pmNDuGVyotqQlq63ZdkOc8RQqkEUDa2r+WTElW7+wH6nIU9pqQMp42jNgb
wNmas2/Mw+Ximkpdn++oFe8KiuxQgyNeh2IXpIXkSYydXF1/em4tNbMfeEXp
xzRmqujBlBHpWqFbtROF1TVe3qB6MVGRWcqZTlTi1pyZApiwN8UObzOn8lUP
rUJmk+CtZjelS1Zd8WWIqsvXB8KVpNLd05uCCHNuiqaJb2brO2UpmAfDNDM6
86zuw54rulk/hyseXcAIcQyr+rF3VCGit57jlq2Zrm4zDDOKgMHJuRj6zMj1
PZ10cpS4sX+B6REMMTMEBqqlrw9neOmQGd4vfSZMYBhU5NPZgJ3ovcCSfjnz
XPHgNeMV+BSurPY2HmgHmI+aLTeY+W8exU2StDUaaiP2e+g3CHJuC/cu+oxE
bf51wXbL/ato0iQ3I+csli1MoBJ9DPLkqRti9N+SJh46wUI01gt1m2MrKF6o
ojaop9nGJBkN18D8yOVswCD7qmNwdoqAJX0T+8J/ERgVdUuwQAaYiEW7KWRa
HMgXKLwhAb9BxSajFQC4o+ezY0Z6Ra43YqPXGH4UnCQCImR1nKWpOhoqaN8g
Mvxwo6rUQ83C9t7jgHsi5zVPgvyaW+BfCDi8I/M0XU1rN2tXwiqxZeunsqoS
ZGuwoA2tgn7tMQcbgYQ2XQ0V1WgzHLyE2jLIeBJU7BRibuMm3uz/yZA9qBk2
P59ocQUlrVUdVi2loG4Mx4jSZ5bYy0q93Zo5E52pNmwTmQFf7AgBSBdloDQE
tn6LcWgTknHFzFYFKzs1W7lFBhTt6s8G7zhweKXCey8thpPbH8gYxPCEthek
2VJBbbvB4AtAi+Qz/iEtfeM5jQ07tXsEOjIVgJicUcHC58lcOdVFXnaTRknI
Guw6WgyZ+75RqZ4I9WXGZbMWeE4uCqBagWFxmXY0L4k2LFZJLprjjCI2+pub
pY0YUQUzIjOUxwLlzFONT8MmxhOnbujKjjqTsUAlsrPvLP4TwTt+Qou6wUmk
C53qDifAVsXJyDiERDhgJ1+HhAK5DQnlfYbCsO6/7SCFzpmprblzwR0ZJBdQ
cXm/rcqqVEqK5hToOUJtoEXy4dyIQMwL7DJkLsoK42RvxuJWP/X3CLyFmlwt
r2pR9mzuUMe1Gqc4T4VsQt+MtHJQBLAzwBkQDwGoRJkLkaMEqcwkb0EaYm5d
og6ESk/ukbMAPhIsPfGd60PeL6Ya1mG8mV/n8AN1RoRZcsZJu7bD+UIsqO7j
RqANXg414FEPzE+V+WgrpQA4qtXsNryWkBBGiEzHCOC9DJQDxXpnIKQjLJkl
Ak5YXAPOraXZel5ROLctYUYRCgMGZyNFJUdPW9gEUSJz7Y0v7YW2k6d2s2GD
eTurvjAGMgDQJRHzalWuH9jOIylT2qXiEs+llrLxAxuv7RucbEbRdHB2pELE
qXLGPLSpAtKF2c1lipqeWouBjUia6AkWW3LDlbEHDW5HGNYuXr0iaCKHWBxu
R5ppdntroDMFtkA1EUN1AVmLYTidqKktK/DpXnwF+I86RAVT6AHYZYSZUGwP
CxouJBSSR/U7XS/+Qp9tPNB3VDsd0opKsKzYr3p0mq4QMXPZNkNGztyEuFWt
LZKWbjPa7lS9XoEZJ+JjdDelCMC7EC0kGrMhvJ/SpTJZY6lv8lHUohduD74c
rJFJp74A2l7TUtMo3FSX4symYJFsIJFalv4b/Lilq0SnoVpAdCin0R0tQ3ot
5XPhfGPlHGQpP6BeczlRtYUErR5iNiH4UQOI4W2sxiqOijt12ju/2OsR2Ol1
ix1FotoguJMaol4myVVPASmswEA+AW+CvEuDokjxwMRXYCYgkegVta1R2pow
4HK3hoiLaQCsM9TkAKfEB+uqEfCgowT2hTAqyBBeVgqwHFbdnA5sb06/Lp0c
JXFd7bVraoLyaS4wh+Qd23QEBtYrBssLNE0WRSEZbG6dCow6OeV/TnxkS1+Z
7G5QYLOpni5fWCz2zR4tPK1DOlmOdCmHgrEDKfpX/NY3Q8tMd1+7wET4HIZB
Pam0oJtrifrxFGYNYQagYIX/02kBoUaUgObBJseQo7t2GKGiVk4jk30WQj2D
xWgckPFSEliU0+CxXFCNhZnSpUmC197LyTh4dD3pZLpiCWaYWLWwyziBy1L3
8WFChyJio+gJAG8UDQfGNJ6ul8yP0ULZdOclcaxUMXrUfAptlDIQ5COL1aXM
BwKB8ABSbTOwRxOS9AHUTz0TvVsMsuy7EWhOtFLhYAG9uHqiPOQJVKCHsuMr
EpulqhRAYh1AGNXudSwgyvS+dmGDIDg6lDtaZbVZ1ol7Kens2iro7NspDlYP
rb3bP0xn3t1wket6zUk88eN2jD6SSbZvcbRu6+zvMkXBVg7doKG0VD3OTJQZ
9nQvPAsVsSlUXDgBntnBQzGELrVLo10WIoKfIik0XP3U+mbLkU77lOS6Bzna
Qqaj6pJCGa91Y1D11KleY0iTtiV6al6CUwSGtpKQ6+LgogixpX4iyJ6VBE/1
jt5b7RwolWjH9gyyBHZQ6G7yGNYWoxTgeR1MiPH/crQhnsZAVQ3QvfBkm/mQ
O7rHYHS1P8lUo57HqE2vL0H2nFWqBdkXbqNra566MmPtLEt89MTq4NNtqojU
dnMfJaZI2vyoD1beOGe9eEG6zQAw3LiHUD/z6tnjE2wSFLyfZm0/gVJM99Qf
zFaSCxoh0FD6YzMGEEKxo70iGDIUOR+R7aAkMY/OuxikbCvRwkD56NeWaGH1
xC5Ov+NVwhGZFBZqh0oVjdaZMpXdxE4su57kF2Eb3pZ6d3P5HKn9NELsB1hQ
64yMHNqrJ9Zq1r6rvHe1XYOwSEFUOJlELzx2kRqeP/LvsXfpC6eveSlU1B1q
k+/jIRAKyAJRAanvBT1IzMpztH51Q8uUtDdsT7odOWoUq4Mc0NXzCRJuVsvZ
9oQ/JMLRFF4hL5XqU7ml2YjVp8nOKRsTX9UudVKNo8uUmBWKlFfGn2BrK5xz
Eu14hGZiCEU2WPR0FDHIoChNyalmYDHh+uI7id4qh680icwIT3/vFJ0XP6JW
S9/s+f0++YvuDLQLD7LcoSfHWO+aVIxU/njHpxOy0JZ0v1CvoSlKYoLRpbrY
HV3rK+BxYWnnBD6WKm3PCcsUhBIkSq+gJEF5fnRJQ0QfhAeKaZsJIVodkYjd
BNKXBLT+NGMWNfUTEldOV7cBjLwsWThhzH3C0iYzAfiEUAUZkaCm0OeoxRlB
yr5quao72dG1jm7cioFkml9KbPVxGEu4r5VxrWSlotlAKZIu2Qs/MslhNtJ4
uDoHVQUBV9igHlUuk1PzoFU3RIMJFK/ttBEh2IH+iE699nq2NuPcBx1QLfqB
GZkhSXs7dq27V0cdzyhB2wiVypMCQhXw6paL+qayNsw0FM3YY5fxNzLDXaA7
Cx7n5snUfAxTXLcYio+6FMgNrhTA6hM9joTqhkFE0APhW6arFnAtFbq8a0/B
w7g9gVt3QLaM8hU4myoUEV0rqLzl6fraqbqngzt+yNmSLxw6KpLUHy0TX5b4
WsoxrGBLy1ZmXk1jSaLKW/rkELSWIvoEti2gq8BM/PjgDhzJAYG9CSczoZYO
w97Pg5iCITgBwkwgZKoemA3uHJTfnoezNyOd8mVbiU2pBK5OFmKeIw0ANJn1
lZOn7NhC7/SKiEIvAHqrfERCKeGs/quEaPKFE3Zzn5EZipIWonSLJhiIiD2M
vbUWAUN2hIEB5YNxbhnHmJGf5efMMAjgJg6n0gJS7GnuHHaKdXVKiVt6a7PQ
Qm/byysCBt8r83zdwaltntEr/aKrRGu4BYPqmzW3XiX1tcF07Oi/DiyKGxUc
j93fKWWrDTXmUGwp7kXEeJjCJXyuLDCVhDr1r/CTSqxnybD9OkAm/cN9hTK0
Q5szoOv+VWW1KW1FhNWM+YijBJ7Jojvh0ChRJk+AU8csgABV8EXySAuN6ttv
tMZ3IbEMQEbIbwJOQo6koFeWD5kBv2pq0W7QxVxEoegtXEu00UHQ0QRCEEeS
pe1EP+ojBhrHppTs/ngyr89eXH4sTIgjWYMPsX0dpIz0oZTEObwQJENVB7cC
vOKdoesrSA5QF1OXxYoOUsADYM4xFy3qTFTRV6N1OoBENRWPq1PA45ouQewj
yCfygNKf7fYLC10sjSHhP69O2DNWSXsZh2az3ch7F6/b299pN8vY2taoS/U6
B9tubjf9VCcn8g/4yGrApZdy509+J0Lxce2i6ylpV0fjgth5PK9Ogl9830fi
52gw3ngMOrRW0B7AItpn0OeV7Eu015+SC3qqXBRDTU4Q/t3xhidcy5tGb9tO
/whP3uUtkgynKps0CMIZD7QIK9TUoj6whNiefTut9GRW5u1q8PNj8Z07tsns
dUHAKh2H0WXMCP7jRL9YEBWu4vioO94k5hrqmatvtC5s2zoRTJzME5DtmXvI
Kck5JwJyHHgTSN4+Am6it2c6oNhUOs9mnUxuqpU14hFi5X96kLJAPCrpfjUc
wrrB4tq5bCreYfcUCJssLPbARt3LvVpilQR4s6bnpZA9QpTD3+QuKpGQZpka
EaI0Oyp1zCQIm6bBEPYerThxLvcWsbNFznLAYCQp0rQI+dkmdAFuTzkKDC8g
X6uTGaDtIZc7qCLJ+NapxdPvyu9JA2bVavvtL2x8TVGDOsAzokUC59YlzeN7
eHQnIILIdRiBIbB4QhsrbtDY2NRA+CZOm6wjk6BnauMrYJM+mfrM+eL9zRdT
jcbdO12MMy8/FvRJedSnnRfrb2rv2fJG8Gw0P4i5wb/LtAmjJ/8Wz06pv0ti
MMnl8+rQjQPA1N4zy+cq3zmZ7peYavw5Mjyepi7G5sgvI5aHLGshsZGctQRQ
76WPvBvlppdl7RYjmsW6XsfyvogfqM7M9M47jLFzt3eki9vxGRHOri0dTf2A
kwJ/OMYo6EKohQL4dtKF2AN+7URzec6M7yCumc294ydmDXzv7CeHO62G6Iez
fcdd+BKn+LIHUntdcHIG1s2mXcnjViS/wT5c0zJc1Ini/fC1DHpLYPWlUvc2
g5hs09YLH63RBolyR6m3QEUbNrvnL6gf/M7Rz0wVCgOTwezLESuuE1ynwyIp
S/dfCtHz0M4YdTJ8n8xIYKBC72MLbZhdniOsbr4M8kfU0mqX1PAcGS61lcUW
clF4iVN52FSKSMukLe87h5vswT9cWXqwBklYntwbHGLwpl69HXAX/byL0Iqv
YnMjKwhV99ehYQezvy0NodgMZ+dO9uVGvbW/b/5MnSGQkAqND5nVTGZILh3a
Ky/Gt7Tt096zWurSUhoeG47cNdD4tDeCKscG/+ggV4+wLx3JaacKrViv7Mvw
h2XwVvdybM4bbyJpdb86xiLnPlHpeh6IwvvblroeM2aG3x/9DxFRy5w=
"], {{0, 69}, {2048, 0}}, {0, 255}, ColorFunction ->
RGBColor],
BoxForm`ImageTag[
"Byte", ColorSpace -> "RGB", Interleaving -> True,
MetaInformation ->
Association[
"XMP" -> Association[
"BasicSchema" ->
Association[
"CreatorTool" -> "Pixelmator 3.5", "ModifyDate" ->
DateObject[{2016, 6, 27},
TimeObject[{9, 6, 41.}, TimeZone -> -4.],
TimeZone -> -4.]]], "Comments" ->
Association[
"XML:com.adobe.xmp" ->
" 2 \
5 \
72 \
1 \
72 \
2048 \
1 \
69 \
2016:06:27 09:06:41 \
Pixelmator 3.5 \
"]]], Selectable -> False], DefaultBaseStyle ->
"ImageGraphics", ImageSize -> Magnification[1],
ImageSizeRaw -> {2048, 69},
PlotRange -> {{0, 2048}, {0, 69}}]], "", PageWidth ->
DirectedInfinity[1], CellMargins -> 0, CellFrameMargins -> 0,
CellChangeTimes -> {{3.544379162237352*^9, 3.544379175555642*^9},
3.574009622854604*^9, 3.5740096771925993`*^9, {
3.581868126615425*^9, 3.581868137389792*^9},
3.6119448864400587`*^9, 3.644332879574626*^9,
3.67602184800485*^9, 3.6760221842131643`*^9, {
3.676022245795371*^9, 3.6760222459531*^9}}, Magnification ->
1.]}],
Cell[
StyleData[All, "Presentation"], MenuSortingValue -> None],
Cell[
StyleData[All, "Condensed"], MenuSortingValue -> None],
Cell[
StyleData[All, "SlideShow"], DockedCells -> {
FEPrivate`FrontEndResource["FEExpressions", "SlideshowToolbar"],
Cell[
BoxData[
GraphicsBox[
TagBox[
RasterBox[CompressedData["
1:eJzsve+zbOlVHkYlX/Ix/0KqTnfvTs7p3nt3H82MpJkR0swIIc0wM0LSCBkq
EpABXPzQj9SM7CIEEUkkRjYCOWUgYFEWchWWnMKJFKoCJCAbykWY2DgpjV0O
VZZSVFIBOx+cib8l3b33Ws/zrLX2Pn3vjKR7NZfanOqz+93vu9aznvWs9b77
3NG/974fffo/+re+5Vu+5YP/zuHH0+997ls/8IH3fvjt/+7hl3f8yAd/8Nkf
+f7ve8uPfOj7n/3+D9z/vn/7cPPRw/9/y2Ho8fN6d30HXv/+KzRm+nrNN9zH
O/l6edjeu77G1/4bbcDtXnO8umud+jrhc6dd58TrXky/sfjfu+5dt3q9unl1
swLP4nM3Cfi969517/rmuV41W9qXWaFe3QXuVXV9E5XjV01237vOu76JuH3v
ehVf37hyfC+DvnmvO6Ncns3trxkV7wwc7hQz7l1323Vvs3bvukOus6h4T+he
Rdc3fQN5Gw5+02Nyh1z3cL533THXHVz1vukbyNtw8BuAyR3MkFu5bk11v+m5
d2vXNwkHXs3Xva7j3vWNvm6SkTtJdV/d+RIjdceicccadjsW3kn8v3fdu6av
O6MhvClf7lhxmDfsNs2+Y9XjZsO+hnQ6C8w7Frp716viujPk9Bty3bGpN2/Y
HWv23XjdA/MOvV5xXXoVC929695177p33bvuXS/voi3t/viznxm8b3zYcPX6
6+66oXmaPENPCx1+Ysw+jGzUkiZ/e/N1ozvF0s3xV7tzME+8iEaqUzSsv1ag
9uviV7kfPTrNYJPs4yO9PtUnw3r6YN82Yf5+4pGA/yyADU07EZTknXMgzcyg
nRdinzA8pYD3AWeGS8icvp2jCj1YsXd2wOT8gsk+ZEE0oB/WCvlYolr9WufX
PhJjYt2zrwJt4cxZsyElyYAa1YZH+k3OiDDb1FV+G9jbJw3EU3tJvRjHGTGh
ZJ+Jfj1bkVZTfpFV+zThaEnDnhq2jfiOaZlpN8tLFbWmfDZIdJ9+LfJrPuP2
BtStPNgn2/pMyCTys/XUPxBpmUs5LhPf9qHYKSH7qQnJQorvZKT6obTtQ4ql
p/asJ3Gq3ok3Af40Ys7YG+y8Ae0b4+Jzch3ZN2m5Sfnq1evA2GxSSPNJ5aHO
RFRUdJWqGJkxmYDxWQ3uVJqUqNKi082b+xJtmKYT3Swt2acZ9nGSG7yQTo+b
2IoqN1Tzs1uXmN3TDfMs5qENgM1VnzOt2NH4vDTP3Ke8Lsye1MDmJgzPgG5f
FF9fjulXVd7GbOC6c8OKvlaf9kF1b1lge9ZGZgr5YZXJbycRGGy++Sm7WTT/
5W4u+yu1Jg24tb4xoVRKSlmO+Stq/teFvhWGNU7veodSuj9RWCMaCqyt0uSv
ZmhgtG9KS24F5CY2HueRJMViZP75S/enXQbJ9U3wiuM3hSbWvnn73aQpfzk6
TT/x+K4GsNj5ntUQ3qjDe9h8FuBnh8YtucHa6YbzNkyal3FJ5Ov1WWzZE7vq
RQfS5n1KrBc3+VjIfh+kXiyvSsAMpb3WnNG+FjdzLtQd1C2ctxST7BGsLEQ3
t0/TRSShx5vTDOnEBkEb+FveLSKmk6qbrvIU4jbXFQZWW/VUhkJ/ddojT8du
eumw43D0zj63UWOEIbNSOYNViUaq5jeUEr4/2dvcFLKapTdp5tlXxbfk+DR6
zfRgCWiEFFGOgZ6QF9o5pj2y9RXjZ2GRt+KjCNuHw899Y71uxbR9kohqQyGU
IJXwLkLqS8gXtX8i0GMP0zvlyj1RKV+8myDAY8+8t71GgX8TQdj7UUN+hO4w
UXkhd0G8mDheq2bb7QmB0OBR++T+9mS2Gsz4F8Tuo5Ex6EEiQsTFBiMnd8Ja
XBLhx0e0aS8gKiSop+Mg+Cg72Zn6oskYuyBhY5EgsYMas6y/bpThVm6UtwPm
fUo9214144N7miTUa22khavoNnU/DpUw0FK5N1Qbnk2Bndh0ZwpNtFhiFUje
+HFo7Peu15RHjXOmT2zpmZ+0XGh9EyUa+hmrqsFbvBgCMQZ79nHdoEi80eAZ
aKoGExoIM2qpjGoGG7ifj/15nVAgTw8Gpv0CWAEXGKsgnlDaPQ3QkVlOUwia
OAOTYc9ThY1DYxpVslGbqL0sUbR2e2aCaGzS5EBycNJAk6Y6QEF8FkzEu30O
ayNaFNuGImFTpa4kwkKpfODjBQ0clVeuvyHpgBhqhEoQ2Va2JT5DBIq5cep2
gvZ68RUi7WMq5StquAWlr8mcWnQn5LWhlBLZedjvQ8hwgMZ8pvRsjGPxK8/o
VLyaENyEXohgo7RBcYz8uV6zCiW9jSrEmiDsQvfl9lhhLXoVtoceNDL3nCZl
VdqDDMIEEKw+WOih88Ur2lzIepCNwnqdeKh1fByp5C/p2u/D+1xhUYAOJSnS
oNglQYIiho3yWbnEg/kQjFRRAw2B5V5IxktnkkjFYmtltNj47MkpJT+K4HWK
iK4SI26Z2/ufmuw5a0p6rDlDRSKSeX2h/EwP7aI5rUJnkl+4BFJV1VA+7AuJ
E5stRuH1dOhI899NVcTzQMiGKLgQ2g9bJad8U8ZuvImst3XpM0+emr3MQCmp
ueJznSoYSIHDHwnUrR0TMncmyClt5yb3oWph6NVDNDUZqz9Cy/xJUmnZzXPG
NsYFmXwnjgnNopiAeCEXfBMk1VDTkPaYqcOXfqA4r7AdTSCGFh0jKkhSNQ+C
rZkt/Ad6DT+1s31B+IMi3fU0Aiybpz2PetGMXgMoyRcOR++L0jxMudytJUJS
00I6wLD0ajaXWpoN/VLPT9WrU72Wb1GhYhbQsLxZdkZpr5uqdk4laWZifxgQ
21GvG8KnxTElXfBL6CpMLnuPYd9XpPzeqSgOhhZa6lfFhF2gt7Sy7F0TQz+p
dalDy/wM0kpp22u2BoHNdUdoOcopq1+ALm42g4aLzVIv1jFSoSQlquy8K4ib
LJV6lCGN1DUcUSOlB5CXPhB87Jj6GCzWPQl3OGuVIyCNqdRELyL+lAk71q1Z
J8C6AE4d/3J7zw0S+LlXnPd4yuusBcVSko+YgsGm4VIBQ9dBui06iT5Z/WVC
UkSsIDbkdRMSrQ813SwJADJ/HCsIQmR7+EPZhj01VAUQ9NWD2vuZob0i6a8F
T80dhAArMtW995CTLmk4uerp4d4aVYCpaBnEUPu64diQ/1EDqZacJ9BWnbsC
O6keMLEVe0uNXVpI2h7EAm08J0hPVnnoYczeTRozKOxt+Qi9N697hzqfbu0p
r6k3pqhBNPQog16Q+aLUPyCCIlaiCfTgMCxUk7LnN48gra6TOLHRZGmybsTo
TPQMeDFBQkRiKJFFArKpnBHlxsdVKxSgPTztHca9PusyogLF+mMJgi0Ylxin
d08yQnIa3TQzYp3yr5Q/9Licijf4gCQa+KxNBYtn2mugRKJBcqDQYI9tPKAW
6FAi95TUWnBdMUh7LWQi3ajvcrATOk97zSeFeEztmqUcdKS8VS7IhSejb7RF
kGmXQdsrCoo76/ObYayQ4qytgndPjdVTxceijJkhepTLfiF9pP2LlAMN8MEj
KNUznugS1Nzjee4wmbnHkFcGo4/x0N7bg1CeUtMeWiwLomLLIuOF0kubH+aL
MY2vFaon3PTEpNLpiuqZ1Vv64BjZU2NPyLA+eCjHDSNRSzrYBus6XBCQRjDk
NomI3dtWAptTFKO88YTlKPpaQz1htSn1afklDqdk0xNRk4IhNYL6sYXsCJdF
SLrPJmcO0upwsuyAkjrIgGjVdnGj3oZLCSRCiMfzu5iD1Q3LSA/Fk11bGKAF
CPzpqVfvIUqU+8i+8FIY8staSprmZGhwJEvVUwSBnGVsuYJHHROp54JOGw3V
zD4n+7X8mruv0ITw5U2jtUnxL/pGhLnjdUp4ZK1tMPSgG4Zq2DdpWbkmGaEj
nVx2WRDQ2I8CSDgkkuz2BJTW6IyV1HFRMOhD2E2AGJiq4WzqyQznITahxDHV
Q3e8cTyFV35sQs2D4dwEeKktbHikOWVxxHaGg8XoWT8j6QCPdhx0KmEi0fum
V8CdYJz4wCRUpaDkAI1qGaLAW+zGWztudwU61EHaQXgfyCSkRXtCUjpDohmq
ufYGPQ0QRnnSoaoy1aXsmgi7lJHBJBoUXKsaUs5M6/ZUj0QGST+5n1T6gbQ5
bfcUZVYVtpD2LzuTIBAAnT8SwfYLPnnxr3G54eTGZmfNDIsbld01jpuIdVpt
qcGQXOPU8z0d1SxUAY6p1IheYkR9BelSr2jvZLyqgSOvqRSagT7OL9WkR6Sc
7cXxPvf83h7Q8S/tztAJM9RNRHhsa+n9BeswVx85rmkcCvhoDJeWdc/eOWII
Vi8BXTudJKPZZtNAxlBY5zPo/hEbYeIbSvmeJNSqBiunyMueGgmXAnNHzqnQ
n3g5gLxANvcKY5BESJA7y/pvubZfi820BUBD4uoaU4xavtAbULffi4UN0l90
0nuPlNp7XlSaOqCqOe6fqV6j+QGraVMfFlWrkkj6ts70AV6TAaoVDWMYy3RU
IdZeSjrSQyaYC6ZU7T2ZlFr6XZyk8as3oUZEqPGwVIq7CYs1Sxy9l/TUI1bg
CGWvWopz0XEjyTx0SKm2hl6R2mmqVt4Kxs2ILArAqfXidwTe20jCAl57iriH
/PJCxhJHa5FEwMEGmJNTfcQTxwIu+z1pC3V6qifA38+ujatePlQfuCiIC+oF
MOcdn2qvKJ6cDVKO0FlH7yLm+JPN4LPvbUkHmJ9+rqj9PHbN2NQgKbgfllYT
K3K8NEBBJE3reG/iSeGHrrwKajT1DFI6qXbLu5VhcO91eU+JAMXwxsAGW/iI
bw2Th0SJCO+KhwRvJNB46+d89kXRS3N5JXlkcHCeaU6hh8Fmag8O9Dyet2ws
LM5ATkwHea8PUkUIFQeS69HZo6BDsfcUL4k4HkQ5Q5U3AQwh5hoHzgBqyyOW
a48ONMR1eyeMAsJADIlJbrJWM4BcN318IXqyFUX1uXZqGfiiDF7XvHwQ1U3e
iVoQCsvEhn5VlQ7ssk2f5ZR7gXNLUxjnLUmoNwbIBZULHU9NAvFQwk2yRm56
fXRkXIi8yhP9LLjUVHAguI3Bh+h70Eaa09nLveKeoubkQYp5VpImXDeEpDdF
WgFBbBNJbn6oceXGTIqFJF3jrSlYeg2ERU5NRtBlUe1TQlILRAoJPHlrgAiG
hHLV0vJnnZsfhlgtQ1vYw6Q18QHNhos/+oe9mIpSqI0KeHUdGB6qm4fSO0zf
7zRkj3T+sI3UlVsFjKSqhLYhAO7s4g7H2wCuktQJUOFwBfaOAkrOZZRFGEXB
Txuo/+EK21OkDH9iDpmqDVLD/PF64VaZDY4hGZyAMpKLctKpQpDBxlbnhrYB
S9Gaui6BtNY/hJLkaky9PWe0Z4EVPgAI5fEsQPfVU055rvU8myvJNaaVbtDb
CXx2PlCwwAT3C3thNDCmLdoPMJ6NRxlzmgr1Dm/o8Mk2x4QSnMouFRcoz7Uw
JGz9rCIT/n4fIbBugZsEkly/w+1u+FZbRy/EXsssm/ZCDFbmnQduT+HbI+5o
J6KiOsKiDz1CzCLJuwaLBbVkWUu9MsbStqddOYuhm+fR5M1LEGQQnoQReUTd
nZY8rkSkdbZvIoJR3EnEXMnJOwiCF7UYDq7OjoPXKXqQ23Wq5jQA8usBZS5B
BmFVQ+MhbmRto6u7tpPESan12sR6CNq44jFEO4MI9ZGWZjY6sVH+qCIDf1QB
Ls2uQqJ1zE/3iOII7gnIVhdESbiG7rmyQzBVvnwXDOljAySRrS81+UI5I2RS
607U4m6QZVMoQUmEGkoNeVVieD9CFdx6EpI76rchLNxj+5bHkKHU9lZnF7q+
a+r6XA/REqw95V1O/RHymrnEQeGYhlbNNdx1A6LNskOJs3YS9uSalyRnqSxB
oZHtj6cSdHvUDaQGayD1nPAI/SSyTFGCVFo2sfStqQHzrYcU0J3TwJazGoog
kjJwI924Mb23DbYZhDrZ6mAXi4+mEgwm5Wdtz+US4mB7EI4g7T7WIWrclliv
TrstYlSsyL6PpuaBaN+otWE3xP2GdZJKZg839+rUZHpn5WmOFEZBSUmNaffw
V/pD810lF5FitXGVNuoCMcksqjJOZi0lrq5rB9YElnoDUnIvKKTPAhT4Q3Ty
HaipCkjOPSfflAwiDqBvtDwlL3i3S4YRRFSaqf6SdyCDuQaFd72CInnhJqek
b7TE51rJMeVOQDahVuyu2ZdGHnT0YmPDAAYywCqXIOy5nJykOQQXFQXWPfbo
mi1kq7wBhsC68NI+NBOAqyfKsdWCBsBCcNxI78Gcb2LnDlB4ClBEnCpUenwk
uhTvOmT+tWYEZx82koRJ6FXcPAaBoKP0Z2yJmd4LBfK7eVyI4SO6a7Tu2u/R
rjM8685KxK1YAKJr2/mySqOfpF+v8XPHRpKUWQODZimGjytO0D33lDSEg9iH
ObVnNntE9xQBlvRGv5WOBZ3/3kskpduY5iSJ0h1RKrFKUDGl3JTZqBdFoyIp
TClD8SqEXTaAaMAgoVZwqWhSfvXOVU8cDxzOSdY8m9QCiXjcPoDt5J2fV5DC
myOULHHzfs2Ok1YggtQ3QjG8CRGGoKCgdWR2UUKxL5wa2jEqdc0wK4Uh/f2r
RBJMBRdIflOW5S6I1QkGIB+xo9HyQcleyL6WSGpUGFITQO8YCxfWJnGclU5j
iCexi+O4pvBxG8nK6YnmdY12iKgO1JSq7Atc+zXlJuUItl2OBgF+vVZWiIxo
xwvaaJcFkG0DiD0p7b8a5j+FEuWb8aTiBWPCLh4uX1N2U8MG4ym+uooo2G4v
sYMGclmhRNCGMNYR2l9wGrqdPjMxBxRq1IVGAod6YfujfUPuj5abOnly4fGp
JhP5jpJHAkITeghcq5HLvp2x8Zpf6F56BlDOatBjoJNx1aJ9PYHsN4kerrpo
k5rkuG3lvH5dM7zcjPkW1Z4N6rRP9yVZvEhhmJ85gIrW/JgMat9+bbKsrRGX
++wgkZzk5doFitty2Z57dWaJQ31hdQpkJlhkrb0u5OWAKvsO1nITi3MksJoa
A5Vo3k4G/nOHEHpXnNiIMdCrBoD7WntmDkXQI2uVWjp5zMzkFO71eBb8Qc0C
VdgXNc9LLenkTjcOjjMVNWr5oAlugOaCg+CRVbkgNaCdo2896ACHuqk1oWTH
YmARjph6k1bptYok5Y0P1xESSepdea/BcdwhMan/oV2V1QUKKxcUPiayhbw+
Qt/2Lhrck4uScA2Cyml6GrvgEdiIVpzynbNS8DcALQrIxGtajuixo4D2QL7B
QtcSLFcA9Ay4ie2AaxcJqROJybBWexpqJrVYSFEjxLTd9WaMVIX5443WWuNO
shY3BURIavs913YEI0s39vvXZP81z895jQ5QECOJo40VbWGo8tIw5BSygCt1
7JFEiEJJoglJoJyckALY5o3BjpajHQRHEPxkEXBHWDzZKuMqqTE6W+r3pDqQ
UKtmSvStYSZh4Tyl4qV10I8otQaZIimYLIMeceTsdeIwMZakeM1BRAiuhXiQ
U2uTCLR1r/cd5B2HwF2mhly7ZW4MJIJUmKgPvA54UgNJnS2ynjOOBAr1kTcm
lBE7RFBECUQSofZzVOoNmI0WiJjskgKEGO0TQQbqOanT4OxgJNk7UsuUpCgB
aMKpZ+O0RTKCn9rJVKHZBztjgIoP12laaoRUB5wqXpdZpmR1iwUpyXUwSSff
Nwoah8ByHPGSROBWJCqhsJ3uXK/DV7toldvMcEVI3aniK5iXnV1HuJCh0WCU
DLTx5sKEmxLW67U65XVBmkzfYKIEXKthHgLejkHna9bFAgrWpZySTX2zK1Di
ArdON2lfLDrJxFsbf+iNgG8JpRkAzprIzkDyxTipnFG5uw4M0Yzj+5U7+u06
eARuXMucqb8ynCULIg933IXKWrFcShKJtq9Vxxgo1lvvfGI65KhJu6vG4LM8
QptNcRBNuFdqweFayMwql28GZzW4IgIx1tfr9JWZkalyveZve7RG0Tbf7ITS
nOoXkYTaQuIb51ds74ODrsycKbGXQ59cWsU76NERmnad1l1bMRWW7hKqO/5V
IstyKvd32eUgvCyD1wwCS5ZqS9LAcSRSY21ee3VjMJEvQbQFFpXucUwsKOyL
7+OwVUyOa/rEsEZNjsTjWMfmM4TD9p7x27XMby4UVdWFt14Cnblxb00EQwjA
TOJkaked1Wxhw9/m3I+KlJoQHc9pFR4kjiEj1mkSopx0MqNHRYMn5X6t6bOe
MEA6t8CQ6vKGjbkqUbYw8beaO3u0ELviW+ZwBj8gjG07G5D3kujwk7UIE+/B
IxSwM+3lY+xSO1ozRKOpPNwj43bVKpTvkFByJI8/IXZdVWE7SeAc0fwVnSzO
i4rxa84C8d0PMRSQquLXPjJbdmIJziVUHwK3Y4xUtRiHPD7IAgBUTAJnGnJB
o3+tY8KWP3YLsu4u2u/who1DBlbMA2JRM5mN3ukVYE6sMtrj9IiSaGcdabut
IuDIRBxwNqgpT1HjATWjUr5UCzGjSI05KQSEIgTXeUIrQPqmNQXI94PALW73
MlzsLJS2wZ3A2Mh/j05DmcVeuwE4W/AoVAcglLNBrPa0kNmJv91i77iXtgxN
PUMgZIy+YhXIrAlly6HNjj0qjLRODLyaOJQoF6KMqOfn8GV6ePLCEYvyOs5M
Wwba1iWomfClcFkGgRLorBzYGe1aC87XtdduWI6yc2yXgFXlD3oyfeVzP33n
wg1npHS2PM4cMhQvWBmxGNm9FRe8r4w9G0+rhwOYQXcHJJX0d2WJnCFHWFJw
EeAMAkvK2uLFKb8uH8Gi12FRZWMMK7/CCOHWYboFcxnEVnQviYDG2PJ6IlLC
mZhxFdPqRAiFtdgS6l7guiJbIYwlyGkhqiYUHadTIWicg5oRzfTJDGuaLCd6
UiotGZD61eIYKtCeU2Z3HQq0HwLIWU2BFQFFpWpNK86ojX47w5CJNLyVKwd9
apIbB0wNrpySQESBusmAqfmDeaVMzfyaXZtxcwqNbE8GecqwUsfynIFFU37N
x2gKimzqFCBTQnEjMW5k13zEp6CbgXcGFjyVjptuNJszemrdAqJdMWEdYtys
deZGN5WlRfN2ptmBEmdygD5Pn06fsfSMSVMgzIAzIx23OsNtm5FXP0ddz4P6
rFyYmvz8p86081bBqd4TTYJWAphHniO856tHfqRE/hycZ0w604UbxwST1smF
GWCngpi5OgMsfk2nfPNQZCNv6TqTw1O/hnSYp/RMLs+vO+XjOQ+mmIaXX3OO
lHy41RXPhH2dbLgl8M+J3dp04xzOzOfX/OozY6bSc+rOjWaEwWW28lezXtei
mkXjRszPTKsbU6CpXKufKl/rzIw/b+mpjC7m3M1BdCNbztax6/mp6r92mHSN
to03vbA7JyXnYcwRnEemjMKtLl1ZHs/Pb3XaPGxKAOe/vdWFbonYUwNmxGcK
ihi4mzYyt0T+CbiK9xG3cZW6MY/zOWCekya1p0mmZqadWuj2AAlQnE2qszrt
M7/KNsysPp+Y2YV1mnPazXhcNsXDcpUZpxqL8vkxmufb/KI3TjuT0bdk2zxt
5lHKGnKjcKWrONlI/KnfbudFZZLptiFPMm+wLXRr+XKj/J4j12UspoaVaRL+
JiEtXb5MnEzeKSbMUILNmM/fs4XrZhtKbEsWzcd0ApP8h0NnESPO09HP47VL
H/TqjvfXXTn57jTPbu3P6uRrnrML0/qKvO5Ov6oMqy3ZT44/mNf5nLs4SRce
jM8OdwS9jrmxW9Oi46+1a3uCUbxb850uR0EMEJc7u9Mx2juAX2HOvkQAIxpz
vHI0JrGKIJRMOxjpAVLz3PcUcQcZgHeKXseP7/TOTnG2FbvK5g6LKj47NcnN
cIN3fo3emRnFbF2YjcERnqzjTTy1VqsckzWl4ZoMSLmzS4Hbj8ZH24o4rmWe
WklyZEd88uBOPmuKqamayNUSyqU+zEyBlqmMWkB7N1oSOBaTSBCbBap2dlSP
bmr+mKS+XBHWbs+ZlVdfq2Eji7odFGwi+kY24dtUnwAEkrjNVPOjLEQfd+vA
lg5zhh4gzclM20m4CxbtKjqZEHX6a4xOlEEYlirv2ixZM218GKbasQ1B52mV
dD+uONNuqQzCx93IoiKpI6Pm+qKOrj5wuKRELUGq0sor0nkwJw/uY4ORSypm
ywZERkHV10XtzrMRvbt9SbNG+gpBO9g5209aFqs+2FSMyU5ahc7CGoQo0WM9
mfLEw7qs70uWap+mpScqki7BM+idWaZVdYQKU2xpCiRnw93JEpXys5aqazd3
uYkS0bsSMUQ/sXo3BHRdPJJax2SJQxSaDSIqy8VEex8jnj6XQtQlFerIixi1
nXKy6KamTZ0Kt0AUEq3KZWFmWbOK7j1BVPxa3uFwpP587TeL6kz8z61v7Gkt
X27W9ooDUxV5yjV0ZdpDmjRZiKuy1VlVhe+mZlXn03SI0WRc4FHVSHe7SEs2
tSPtmrB2JrJKIapHM/jrpr4o4pBi3lzEls+dXUcLd6IDqY0JpjZp0crm5Gwn
+yOlaG7hJNyR/JGQHpqp9I9t3ljQAZG7HxtUhD6O9NDEqsEjGRAODSdyTjRr
TvKK0U411VDNwttF89yAuFM4g8CRCVU4JDF1Km0Rd2pbDOLg103dGiDyPkfL
WaRlEeVhIc6aTghAwM462yuAU7VYa8o81BMI3/R40Zb4FiY9a5QLHUUhOwFY
WSV0sFpi1J66TvXcWLKsTeiMOZX3HevgNX27FqksVKtYomIC7Vx2zfTef93V
S9jMO1L4pNv9vqlbX3W27LWIluvIQ+3GBZy9ZpypkAS97gkznaY5mTqKelj4
dmcSkQyICHiHM3PII0Kd9lzsF0AIvF13VY8xsTsoJL1LCRXn4UiZVR1oQxDt
DBnuQ1SHO0tJGa+T+NJMj6DAnTuOx9eYsyRqHE8m5XCHAJlTIc0jAr5QEOGd
fB7m6QwHB4Fv1rArNwScnTgI6DQi3R7485goklOUVpS69Dl0WfJU0RLImAh7
WIVw6A3AwBOhma5SHuxHZPbyQXKQT0h20YsYTQpKACdzUu4HSoSgq0lsMK8V
icRWcY7sZPVsSQjxpLU78S7WwZBlO4odz2afS7GKFTmlbRaiSGkm/46CRdkq
mLA7O4wZMBTeqv2Bz5og9EZvJyFGHFOaBD2sEyoHIsCbJSWRMNswWVYC8Vjx
aF3hPGv+PoZGlJNzWXyPOy8ZoBLdqTs5ASUuDhdOaNlT2dlFtZlib8p0ZGWw
X2kWeBuyKUck8wEgqyIF5e8zsbPlQQGygKsg99MGU1yKs2VUrl2COileTGdy
JNhQiIn+Oqcqu7hiiE6YLR7XgFRKG+0uSoODsuXEj8oWmL+TwaJUlQLEbnYf
KSGOTxC7XDE34VOi1/H4NK1wOPOKFuoSw4NTQYKEYwoUR7AjmpX6g0gFL0L0
gxZlEjLOiYoxvjxgV0xbyDUPzmFKVazTqVhbmCe1NO1kPJLr+JNOWhIlAoUK
5Eer1ph/KBA56YJHGYqcfSkclYzINrCMuGR3FjqORakSiZBRkaYYxdpSAjul
+a6iCktIcLYwaG8hU9kRtSTfDLlcPJWGBa7GJZSE83yLOrCPI5HjE+xFfHdW
7/LqpYars52yKFysjcw0SbQQponqFogUyDy3usbR2ZtBLrmRrZXyF5SwvBmk
aU88pHod07OM7y66E2mpEWEzOn0853jGsNw0BZR00xGpwkre0bQxIzQKRfhG
C9cdIZZpLwhruCUpErV6NU/ktEptAnP69dkuThhx1qDkXCsUm81OQsc8CQyM
VHch8p+hJwm5oE04fV7nXGZhCWVFvlJTw+psMMtI1pBc33OjxYAEH6OyhZSp
GM7RkdQIIrDTU1AeXMUlAkIOxiJFGtiRVTl3CnroWkxCSYGdmp2SgitIXSwq
wyRVNUAcQedb6UiZIAEHAZMfidmx7vODCqxQyNNkJ+t6OmQfQ0SCtWhmJjRt
rpnfK0rKYaFZrm6hFdEYhTTkNGEps6n0fUdK/PBtz5Pr+I5iFHIh0ylww+Ky
Ekt0uTC/Jyw97pCuUKeOg1eS8vTZYbRFV6SWK1OqVRh/nBAgrLin7ZUPHfvr
5u1oZkZ1XGsF1zR5O0y4Yg1x5nfkQhBnzguQlnTJfFwN3p3urzCAB+/EGGPL
aPno4OCjal2kyo5WOcWoH31f9ckdTJgsB84ktoQVe+f2rzBs8FqfyjGVmsUl
yUgbbIv1K3ylTMZg0GzVq4OiEoaYqPquUaegimw2E5Jty7nfKXSB0v2YFwiW
pAkzB+nJJGFLVkGTe0uNMTQJBNZPBBfeEVv2igMLO9cFPL4S8Rz5qXKnsQv4
jEwmY3pXJLWW8FlJyZDQr7iWBX52LlM7DHYHe0ZbZl4xZ5xRwQsiuSGzG01l
TDBD4BiJVZFf++IRWitIxMoRy/LVJTzFNeKDpGHKGucbS1/FrpjFUtQS2oNE
2LCVW9gzyBCKldJglT3qCr4leYHgr1gTOPHNYKsmRFpRG2LvGE0O7g7gM4wh
y7rgdcIkqJBZMswfG4OOZNzKFt+nx0MVRuyGR1YduSDpGcRzH+6voE6UU6yu
np4wXgJdsl3SuUczsIIQ0VQCPtAYn51MPbPNs8M577HzJqrfheBSf8IPunIK
01aMPPLRTXJHvMuySsH63CvCnH2B2IY25btWwFzQTa5XKvIr0NhFjxjlqUF5
R7GzrBFrOZG5bsaSBxLCZq+5QAxS3MML8R0OVqXQqLsSw0bNIWKzzIosSLmU
EBB0XCt7Nl6ljOtsJ9aueDw3CWSehpsSSrTRwCHqqpDuSQ0EdtJDGLCCiCXD
HN6YyApXDArRr2PAvY7ncGuxNh9NNiXBwUlSSE4xykFK4ZB0qLPOUgFhFb5S
v1j6VtF3xlC4JA+y3MnSUC04ArHd4/6Q72W82H3LwZVDJ+mwi/Nz7vuzNueq
2xcM7xJW6o4HF2IClDi7AY5kLpck8TFn08g6KiKsWvuAj/W0xG3mYW9TcWnu
nP/BSFe/1AZ3+rPbyVfCHE3DzqVD9cGCqw3DjuJIccmyAxFjG/YCLFGrOBzw
MsEZ0VGL5QLVhV9pBpbxmNGeBVHnJZtOIUDJkyogSdpIaUZwxX3IglWlnt2h
7ViXI8V5beXbV0G1Qsq42cM5A4vwCsHKJwYsd0EcIufRkfKBjIWeyEMMtNBj
t0IBwgkDaMCJT/h0OQQ7/Zbj5V4YzqMBJ8HpdxFkRrIP4HAueH1J2mg44LSH
QykhDrAz7Tk1VEs7H0Dq5wXa2yR4kRluMer3EjhGrIdhfCJB3Z2GT3IHaFAi
IAqFUpnvK/ZRNE1BY6xEoJh4UGBSKgliGhCCrsESvo3tDXWYXKRi2RWd7Dl2
RG+OVL8XGwLzGaIwrFfEhI17hk6bWK0pkm7Gxn5H6rEXtMPqHEfdECkmGpRY
JgYLKYj4OfJ/xWaMwqimdmQwk7lX9Ch9SP2EWquxDCGgjt6qS5FiMnAFLEsM
FSbKC049LxOS0VYFIPU+zKwVPAVwxHRvZBZZXpGz3qtwUFz9bFfFeqXbQGZd
DVRGUiYUA1j6pFiYeb5Xgj2acVak9OQHdvJyfmcoUuQsOCAqh/wylMhHxk1v
2q6E9XzgJJ9hsqfdziXOPnte4FmjGUXcp9JY01GVWEhb+D0b3NCiVPiUcr3E
wmWByDPGUU4URdmo5+GmxS0JBc7BDFLWu6e2ydVEaDSyXIUjmR1eb2ayAjg+
EMO9ZsEeUPTkFB/34SlNMb76+qbrFXgSCkQM7lDOwiRx5lW/Rwrw2z3pAz1r
9kRmUaGVrk75FckmHQjGh9YC/PEeL82DGiGh5BpNxY6jSYceoiEmAuFsympr
T4Z10MyVWOt5qhiWsbaA4lzX+hBZupN1hdU9T7WL4e7jWuap98w+UmLKWUAp
E0RAgiWvFK3KGCXoPS8ZQF1WwHYXjAkerTSmJKGs7XvXYSEelTOW2ZAmIkQs
zhSCVS/zC2deOUyUt0j8AhYUViIz49lT0EMTGLqLfqcE29fe9ZknpN5if2oh
bIxWW4eR+qJuR0oCXW3kVDOET0sevt271PjBXWp+tC5IMTVjuLtDxRczwldS
xLmTZL9ID8nN5EVAbGKMkpaeCrtXMmOlqxfVmSJon9UFxJppz+Ub+auV3Yzx
Fp12KFTiSanQJ7ipOI9dKdtTTilpQ6Xow31rzBLZghpIE2JJh8TvPE9139ED
ENUci5f7SMfgXmSrYO0bNdifpa6SNXA0LKO0Sh88EbyfkXrnykaWe1hXsSsw
S/ospzZA/5yAU28lEfQ2qZBiDXoqc84rPgUSbtBBVhJM0xOaFj2etI4hTZTJ
0tZKxyj2c6Xe+1m9UEsiqGakEFOqhld4+ZCWGaV9CFSOIo5VtO/i9KGXUPKK
ECuSSVo4AiwrRUYylNWYzkZC+ZAutI9lSA0YmV/ySpkDCsVKx9sN6dy0ewyW
d9IhEIEDIGyqsoLmN+QhYhq11G1ap8Eqt4rQUU6NGGpQYtO1DxIH36nHEz3k
vKj3NePJRtgOjDIuj0fbahj14NSf8oVc8L27YxpA9/qp1gicZ7lrOvFOPd2X
n80A+tatNcUO/QZ1TbEzWRXrihqznq96dmSvBSW4s2cmc7J4IZDeyc49tJcL
lNDeTN7wxixmf1ed8HlwZMWcBML7MJIKQWwbNDTqvhCbxJyaJctHMR59AnMG
fR1TZU99hdPMMUHWiwsSYjSEoWS7vwzOyl404yi1NzB52lBAnR6cFOFwpqog
iFpPBMBNSSjur7jJX/kBPmUlIWNUDEcZwVSTd2pI9v6spwOdPYbHd/Q4b8Ry
QSHaWAmjXsulngs6dyOhoPgZEWzTBiy+bSFMoBuaJpJ9OLfH+HyYww3A3mO0
6o20/IrBZhi/7ckv7ZxXqi0aEapxPUdNIKJJCgUws1XlpIrRGZESPhcsjrJ2
DtOXRWQl4GMSFPSJdYO2046Abwo+Kp7FSFk9sIW8y5kSHpyqeuE8J7uAM/y0
Oj/YqEclLCs1b8KXAvYMAkLW6fu7ND7TIC5RNjwJigq6hAw1bBmTuNsdXdjH
0MeCyDKb5lRaijL7YOkWdO98E86ramQR6F4eJDUjbkwQaeLDvlFfyKM6N/0r
Jcm+MKyiSohvotluIkE0WehzY+mjj+yDzVVC8beF/dmGhmhsBzWFPK4StZR1
YeebICpPqieQVOpOe0rFLn/L1IrbliL6ybC+GDCVAgXJQ1pNOxuCaz+jUzlB
Aq/K4N4Y90noqk3HLNkKGxJ65UK6beFh/Q3zTyxxZ2EyrhirP58H1s86dRsj
5CQZqgYgmDSH80RqpDm1RZwYVsR3emZ9CscI02hMBnSVfo0mpUKzglOTILgO
l1RMN/ez305CMUWhHNYZdhU4lIc2s7bxDtEZWIYprBVwnnLQDSvOftkkZXs2
O8arRxMuXKpQXampBTi6V3VOckrOGKbfaumfOBu0Ab5512/7YjuQfMxVO4Ow
D7BXAbLNlAObHNc4BtxUJNNfMpTpz7MVYRqnqqylc9cym6b6W+JAOgyv4pK1
gozn1/d1jpdpy1EoyZOHRfwpQ2vQZvAsQ1AQRvKlqRxZxfZvn3HO/mJFP6Qy
jgX3wwxljGDt9EY7YJVJWNrpD87Ey5lAzAcyTeXXrCOl5ZM8KaLZF47oG94C
gRx6cqRmFENKTBh1jJEJ8DZkavZl6tB71YlKRDzDCVJ8M2Lz9MlHdpxTeGKD
H6C7MUnrEFd/s1Fm5Y2hn4qjRyeHu/xZBdeRrLckM3xWqItpRU/6OCyxt7pZ
NXUlSlN3YnTk35iUJukrjIpRaYl9sC3BGN6wVNSd3S/QZSdaE110sLPkW6af
LF0fUu3DbHnRVWHnZJiqqz62DSlcuKCn4lVysTgXTU5cZYIeU1aNMU2+nCav
N5VjEFOsg7PB4DDSqVXODxz62vi45UycjO6jA9cXuzx5dZQ3E/2pb0s1aDrp
ItIj8QBtvN/2qzbM1jfHa/jWbrb+VN+0Pmcf8ihdPZBva54UkLan1dvxKV8d
P91gHpMjyP5i9T5n0CpZIla1hcFs3nFAq4smIxVDMqMVA1Y0PvnSawr07tGq
pZEUKQ03xaIg2Ih5sMpvlrHjYWZ2b3b2ZmG/cjqlFBZT252PHCYcv2p1IYa0
+kxw9b76igCZSqJABro/INyzzTEESi1OgSgCIRfcZqIoZU1v2PZTFnLmrtoA
rAxjHCSzykBLQPujUDDt290UqkIk4M9sFCpWlrvXRZ76bIT/zgOkmEBJAg7k
3bg6zxyxDfRL35Y4MxWbNKwKYi/uI5VGwJlU2SO2BOC3AXDBrWl7nlDw9Efg
+xBKH+lOkTFtHyFqodLDcjFH2gRvFsA2I3CqXCrmPHkzDkixYDFvDRPKwZVl
B2mp8KppGcki9BA0xNRkbSht9C05Rb7QujPzV7XjzsCkFVkbBByhzLil1GiM
vcGLFa/bSk5VM5TP9k7aAFSYrcxWlKo25ld5NWnaAKzCQqSi4DYJB8zTWvVv
UUCVRaebreAGErY9i4nrlQ1zbe+1fytE0nju3aOHL3A+uUDgN4G9LRoDcDJX
fG3AproFhzp/5l+zhYwM5WCSu7ZftZFXHFP2DiQf/cq1W5rwJlvF91sLJWDs
2WZCOMaiofgi4pb1xiVqzMbgUjva9gICZbRZYnrlLGo1ZVqysOgqQ46f+MxN
UVZCImoIRJxcmytfgr3gB9lmjb7YGRO2jVahM2x7GVy3E9xEVakkmMcwUe7H
mhLuc3ZweZJ8YWWwPkqkQ2cml8nBuOtECoSIo+K0MeNyoq0UrkYt1CzwpiI2
MCIRslbdxAozqXctgzV2qm20f5XyXRaCYZHSKTuy2aAEt3ON+kVmU6vPCpNZ
LW1AH6BmthDrcmM50RmCKnEHt2IeYmMSWzImzyq6jwBVgVbfy/SHO711ODpV
630Chx7hJm70lQSRp2owGphWlYT4xiU7Ozt/NcXqIKf/KtkK6ZYoNK2o6Eqi
qVEOIWgFNEA3sSuMBzt0aJCbtCCV+XKvE/hiMPMkNjMp7uZ4VDDp7mKnJ/tu
gigfZWCLl5IUzSGTUE/VvNEikMNInbABvYPExaMtkSA9ZCAXeqcQdpf8bEyE
6QM0SpCC0qmF8yRVGDE5CM8E8CVaGal+SeubidTog8YWTBthJz7nZolpUxZ6
8joxNk4CqkSiMisAwuTpYsEcpUqVdyEFahLaFRKkzzbEDQJ/1YlApQpLbAfm
1For/hWL+kZC2XPeCeBBVdrAgZ7u1K2CD4v1Tov+SHuvXGawbyIiqazKjBvM
Vlyg/pm6U9+ywU7svpGnPhJtWM+z0QnVrgkVky2nbZTFGichtH8MBTee365w
PmNbDHlxIOP5bJa3S6MlOLOK2yiY0RJiBEWj4jZ2Ry1MIp4TXEEJ3TCnriHj
u07HJ9HPtj+tWitE6qnH8NA45k6SHt+eNsg0p31udxK7uCPrpSjAI+xBTEz6
RsTTWAGc+8aiQ0cfvPfpG7YWpE2bC0kWZ5cBbmaE2UBp2xZR4FgoelAl7JQh
ej1BIa0aTGWxlbTVk97CAC0ERYj9p1EFORhFycExqPvQjFECRgkNJ1crJF2g
K8sOpz++avgzpuqNOWLnajivbnnmWPRFDCHmPYdj5ZxEyiPfm3EVrumkWlwC
2lEBED7eC4+Cg1B6twnjSeQtCv4IlXujsR/4W2QDDjKnL924FqUTnoIS6CWw
vYV6TxyvgWYtCJN/+lSND06Ba+TA3HM/8RBSw/WIMjGUBhCP/Op6j7g3z+SI
FD7Q46b5YxbfAZisgoOUCx5KUyfSRu8uTFJYxonMPfJOs0wJzwpJkksJRcmF
stVot0k+enHpSZc0v7QwySNi7U4R00TGDHQyjNcNPbFFgq51yk/LlSQKHfr2
tqe0BQMBMm3DJc2JHiASE5LjbmGVQo+uYIfQs8yKRmE74D05X7Lv0w4H7A1w
tVS+PV/UXwSOiaFJBEr451aGoZ0WbgsxuOhwwVKJjocqgYpaBOkvKLjnkd09
gu6BaDR8XG2lbxxJxZnecxybyIReg2uLQlgcosxwq5gGhcfI4tUTIEzCaU5a
Cuj+IhjM4x0c2t17zdKOzm1oAgckvj0d1FMb2aHkMffEkZAy3kV4ba3UT/Yg
lkEQ3s6bBKo7LZIFFYEER0SAhc76K4aURQDGtFziY6JZ2aLZSJpQFBxwmCRB
wdK+YoeMM8d9GEuc5iDl0QobIkR55YpNqYdDM48XE5Jzn7ND2EhpC+URk2KY
dNvF+/fGYQSRJL5ULqUrIFYT7SnL0pF7T3F01kGg4KmwkfKFGhsOGW+Fgshb
fyuQxv2F36dca3QYVBSEdDx7i/6Ol+P22PYayJeGs4POBARezj6Xawfci10L
8J2o2GM6e50hboxHHPJOPYNufFRs+4bAxJaBMOT0LBS1RRJxcKEzImtxHmyx
8dPtMctJb0dlQFYKLdlmqyMsL3KE4o2ZcUbTE7mzg49mpPRvsAHijDSUtsFQ
kjabT1GkRWnUnpDdtDoogb8hoTwN0k31iDD09pKR0cE4S4ReydtPkhFpKUnA
d4KbWeX9lWuF1xQNHDKC+pZISOvwUY/QCiJwbjBtXfkntI52B+4IJd2qdaX1
fOQWRXYu5FTUSVMD7BFICrBusTPKNRQ2cFsoA7R/QNpCQwxApBUOsjjozA0W
TKUuO0Ll22lJ+sZehxBL19fwngg8T8kYSqcppCMTCm7TcuqhUeFCMCLcitnY
jrVs0g5OkfrpGTsfZlIU2l0dRKoFGj7PHetAIMIKTkv67J8NJbiDnAoBknmk
ynhRk5EKgoynHKEVLfGV/9CHXqYlRZLJ1cfGBktPTqWHe2Pc7BLCZonWCDVA
pg3SQY+0+oFLRouaDsPYNuW2RjA9IqqlokFqzLGQ8yUnPELcy+qoKUg9dFaC
ibKinC0op2gCa3jOfV0ru18MdhACyJIXkgKV8FLUeFpPECVnyzmCCKIHg2LI
xr8hO5Gh0DcOxKgkaGUFFk3GgADIwziHkSIdMnlLDuZVOKxTKpQtEQBHWPjw
nxQ1ZwTKUFOdWdFgtYTTgYnXMq+4z+yLiAfJ4gJBJFGFpNwRzSemab+kjqgw
coIHqQnULUSVXkObtZKt3MGWsHvfRebx3zuF5eCOqCVJuh8RQygoJQPOWFHL
kLM0qJM8uGNAuCCSv5odoVLD8d35899hmHi+2FOdOiIliR6UQyomcPhJz/Lx
o8iCZpwLzmlm7p2wuy9VhTPOIA0HbqArZD/4yLI2pkOjaGNjy2Fiy0O+hOog
xXRcq/EjHURtJ8Sjr/hUgeqaW5JgEQXQpygiigZ8bNiXKD6pFRQJygli2KII
Mo2DhRG3hqFrSTAdRlpOSrBkAdnGEIU6GJ4CP3dxNrA3KXN8JOZ11PCQCK0i
E0wN3VoY1lKyUDMWi0KX0LCRyEEuKOFgOb8IAJIp2afEigfAHi8uvpAkmirG
DiHrFAEBxzM0GMALqfFdcIGTCx0UXrN22shxQJkJLSkJhUAOarDX29Ejvcmv
PxKUeSKb3FSmVknXrudAaPpTsEhsm45ORSSzAmN7AbBTWFB6+mgPYy7Kj6Sg
rkx7v04faRltHk8Rl0TGGN16mzzGbPW02tHqnJgkhswoYKWFjEqPIJzj1SqA
XbKWlErgaml+FiJ5M95HGGUJPVUWgylJO8u14FHkD2uCaY6RhAhJCGMJPs4l
m4Pyk+9yEBGUinOn7aNfUTOZQswEAFVQyFsyVrkAQtRMeNREru5kQEfgtztR
GDNY/jjK424mFe0Wa1pgo/tIGk6irU2OQNGzwbTflPsKvipGFBxRpyQIwET3
tqGIaKxDKmGqMI8mJr+EAnrR/UanIptZ7hIr7Fv+ay462k09ZKdG4lkVMbdc
OxZ9j6DSRJSjkpRUN8JL8wsx0OiStvRsDMFLDGds0S2znlBpa8NUu5W+AErv
FFgfsgusNhNsZFKRZCW+qTqF8xbkL2WoaA6TOZuEheSopLM7IRaUSiImXZ5T
HsGfKAg+KCUNPyjvXjUuGcBkCYvYil7E+LEwpICO+3RXvou+iAFBiLSrkarh
bnq90wABW6c3jST6aaarHDFEli9Lje+SE7DLd3bjHVmRxc0mpA80OfI0qdPU
naxj6qAoSVqLQyDaUjwiOEzcN0DOuUJLWQ2Qbw1boKQWdjOrh9pKw7pquYx5
7DnLR8oxEx6FMKU4Dp6ewrSrrJ1ZfRZPC/SyrshT42mJLhNplx+XQLC2cyte
ghNLeTG5pJ4UjonwMWc6T7SpC98u9dcqTfpE4wm/5FdRjGkD0ocu/Spa6jd3
yZ4J3krWlClPStLVib8M47tdnYa1aNwUwdQYJGpNhq+iWbJ2VugyhjFxSg5U
sFeYVOrdpTust9TLsXYt60BnQEqnZvWqm/q1VxviVG7zdLE4A/kz5r+zMMHj
u6ETWPLM+SRBM7oi57SexJamJk/yV6eNpwRJagLOg34S1MswvjBvlgCOUn6w
S3zjm4XKza8S1KOqLHndLmR0AnMilEKPWZIvw/hzSNuJ8Uu0nRWGzL1QKWxm
VLqbOqJlV7evEw/mus+P7KIlAagQ6JnKe0Po53pprfJpU08Bii26TUsFdDe2
GTMY+iN5f9SxqWjLU+3YRZLkxC9EiW1OHJsvanmt4nH1mpGJj3BZnG6B+Kki
fLvJ+XONHoy5uT0rLRnxjynW5kiVUcZCaoDbP6tdZb/BlnR8Ze9qqpzbPCNM
DLUKaddjlUCtbsfVf8k2pM11MHIJ3HZm8004iMsTBTdsfgOjMiBdNGyIYyRe
McyloDoKCF23W9tpsOjbic3IwZggAtOdgOf+VIUNxKtAqPfOlVAvYz8zcYVM
mbJZYVnmx9MVCUOCj4w+p0Y7JzNKISiOhvjCsOyUOVWV7/qSMOktRo0kuc+h
mX4qFjU++Mp8S0V82gC7oyJWC1oQ84kMBUli33XWkU6QnexRpHHKl/l9nDwL
ikZud+O3k7vpqftnYl6YVzMnNTYpFuVyGeFyE1FQbifIhFgUgZuZMDZFCbcJ
lsa6nEMDBJZh/sIwn00ayJoknbVJ0r37+FCqqHCLXO/GeNWtiJi3DLZ5Oc79
UhGpIJ7zraz7MuV+H6PW3XBfe6fUxtScof5BvJOau6SrtnPbTdiPSVZSRA5X
fGRpNxOL/OoCzZZp8nLmccAWX5Uz8K/Z02D2tJH61fbwazc927BiR/fnkMyT
jPNsgV6AK6N3RmimTd16xEsaDPcTRFtYuwzjZ5FkN88MNH97zmyTzm6BbUmV
+fF5FTW7JH8ApCtBTjbYVMa0Oa+3MXBOv/jUlpeb5ORMv7rU4E5EkFecwCRY
m1xIKHVTMyzTz2DbcnJOT7EoiSHi2TARz21twAySFdu7vMqUR7Vh6dvseA3+
tJFTUC/TcpOE4SRi9GrSFozKEp3ZG6LGM5fKcKPOz2My46/OOWezAHheYt7S
/HcUJvN0LScXzpSF6Yxrgks3WBLADGjrhCazo4VVV5AKolzbAu0pteenbGS2
qouLVvX9bA7D94lHumJAEs/yw402zCBGj3fLbVdHbduFyJZxrBNh2001rucI
5nIismmVNGBbYKXzF+3ubPi6oNszjxuwk13WDAhZ6nMTsoyxO4v85ybvhEpM
LcewVHk0N8OE/Td0O1PpULs2qxsz1NJQFsiUNi9b2UwVxMi9n41Pq8/t6XzM
kqYts3KGJ+dfJQIlE6qInLVxm6XEZN6dE9OUmwD2HAtnQeu4WoWwzufUjf4G
+2dCcE4VmJGvnD435suE8cX2LS+ND5M9/w3iPKPAY3xLwLeF+0sqsjpVxwOK
dbc1CGJqKl7sXWkhh7iSoxqZJS23nFv65uvGQlCHNWB7Xo80Q7nyqcnxKbJn
+qXJdeb50hTDu4lvJ2vBRKynzLgFjSoVKTSZ54jG+eEormkaJ+QnjKk4XOX7
rW1tpoS08GurJbg6TslfVYI2c//M4lizrpCgqQIx3ddN+D7h6azNy1kz8pzu
3QzBphCrRDshNtez2U09xgx1akkWsgs8f6LisHnE8SNZcqxNvtWiJqFb0l5p
ts52S9sUEHSdtYJ6FOZLnyZf+tJbgZ1r2bjE6RIvTo/bV+xpJ9LHgPjn7XBU
1flsEVUCytqzwQC3uTu6QHA5GqtWrFq2DiNj4vCGAqrE26KRti6CNHPbrYQq
3UoDVM65nBt/MttXgdqMqw+OL6Mxbg9zuLMgdoggnfnwt7c0G8d0IM+AEuMZ
c/CM8akAgQmZnxiwNSS3HUE6eCo8FMC3Hfs+Utcu2Q5sx9lCQG/Uh5E8SB9C
dWs/WUA8EbZm4bYLEp2kGO5wmkidtbMasq0Lvox8012qf8XCIt/G88OOI0JS
oEk9xIV0wBVjaYgxhfQmS40xwYHyme3N2pieLq0t3vtQM99xr+g0o7zz7Bsh
4mRZuv3b3rASTfO8XuWII7ncntAxut561g/+agq7C1sJohPYRy5xcNd5KkHE
LDfx+NYGsHhuEZTlmMgMLNeLxBYxpl9KZJnJmEfCtCWTos2dvho2AIn/nGJB
QCxb72ZMVIXUyN700Eu/eETC7gVo1ARkwVYMRm6alq6EXT4hPF2GHHfpVo9W
6ogjKcTejjm1NDdXGrKo4dvOSk+3hKlSDpZebTFtRw0AK5KvFf5SonPMqbjj
FJ2UNkSKHh/HQF5ArSwOBoIyPIyBCrkQiUSImEOxQUufMFY00uctfPTqttoG
WBhGF1KClOoyiGSASGXhXjolKZf+cJ4TGs7TuqNoe5KSgPicuTFm3vZLCusK
A3or4p27wGPMFwgLLxGX1k5VlB/ud0t9akWZIkG3shK+0vlBCegVirUh5k5t
O7UZA5atQ2S4yU7HY6pdHPVmTEJiZrATLW7oatBxWZMgjR9kJHmtqjs+62nO
6CG4Rj9XCbbctbRlSoss89Km8/QyzoDyDmFpPy2++hZgK/SwXQb1ReyC4yAN
NoSUuGGRpa6JUOqsee5YwMM2mcgjeS2GSZ9jCqPqmj47DmlC7HxZvkSgKCNU
ELRJhu9bllbpxpnbK1QHhn3oYKXNZt9DDTLOE6pbMYwYxT9d5aioQZ+RjGCy
nh4DEJ6QPhCxRU8IUu1/PMtQBXyYSLrLC/Y4oIr93OJx1jQsIXU8BEJSjyiE
JZaIgpcqu7SL81z28q3lqWMjudIh12xHE0JJVYZJqM0MAOksiB2WIB2jk5ya
3oY5eTHOT9vtLfGE/aUeho+JmOGMj4iVcYBaxN4la8WIpXwHCJIynfXq3QqX
E4BaX/pVGk7l7VJ/UvfeMQJL5IgBvtXx0SkuMUUi8LorctOLGhpyD+VWVN1D
4BFfWlohNLFlkoTVTbFQBY0BKiza1LCEyQXCoQ2SyZTUUG0CW/e9868sBZB3
5ohUCpZH2QFpIkCOeMugbTCQTKAR34T5nJWkM5Y1nPi8aeK4bGmhLUXErAVv
qU9batYrJbRSJLYLYi0ab80FZmxHbKHZtuSpqLGzq2Mh1R0uq72nM5MqeacF
FPsI9KgoiBRB6APc3GJC0j1Spy0Onaj59DtQCdYHb6GXRubxp/FkCfUL+7Ix
ef0M3/a53mNTKfS+F0JkjSXO0Eyytmo2vkWMwFWajRo/I4xNjoUi/zu23O0H
RKZRy9ELaZacb9x7gIFcg7YoRuY4NvuQiy385dNFssej4HJHVdJ6VCDjGstH
eVuA7F/Z6YTxyqsAH1B4D9x2RBiipeHppcFjCtcsNCQdPWgMEejgFE8SZNaV
innVasSRfZyAHG6WVvAEh7ptDxfYHYYU6cxnv9zFQU4txL71c/BTQvmpUYo4
VT2UElo9NB5cQCV2XKr4pI53EFRbKehiJwTTb+LtgK5iOEs5c/HxpVF9VOhG
efFHwH9Eh6qJM9ZhNBwoFkuUdZNEa8OogqMxuNU5VzDbJdFSYIt048SR0unS
9zLm4Y3Y0rPVvdtO+kI/0RNiJM5zPP07pP/WefU1j8Xdis/djImH2KoDN5xY
ZYn20roOyB3XBe60IYCQa5cFK0/Ub7v8SoMXaxBJmTceHibQ1bUXM1Oj6yKs
YYrG8/5urD5ecBEgVi0TRoOFytaSww0F9gdN2Fv46/2G9JlUSS2U1LORbjsP
V2SSM4S+RTtH7TTkC/syFnmUDKo1oniSR2gRTU9ScM0FwhCBsKJsJUmQJ853
ag/zofdHiKs0laUh4PUqifu2z/V62sJ4DnGsgwCZTPJm2NHw6MSexJgsmyMO
KLYDvMFhx71t5pZAa7pzoKMtnieXJU6MeIctJ/Ue1hi4PPYURMo11a6VSAHv
m6BCKwoHCTK8wObIxRaMyjLi0gRUfRfm4SNy0s5ri2FQAEh9ZBTvWVZglPGW
yY/UCzsRpw2eXcGMjrFFwTL1kFpmQse7uRW5by2ciz8JIKk6FJiFl2uBRd+l
XmUQWmHi7+JAe3Z+nHcrHnSXMts1RNFjAmxRo4lmznMDH3pLoicburT/wg6u
4zhS3yuJQ8ZYCIj80jxY3ceumQqT5Q7EkPc+1sJRk2A1RSo19d4cBVL+nukK
XfJOnmjjpF1lyXUxQZr0HimkHpuBtgEJgs6NqE7djhZoKisQMacWC2+QPtux
GiWostN4zy+fmcZLk0lyoSlvk9C+Er57FKhVsM5QalMPlz2zuOtrAReVVEgE
NQCGJDVp5KP0qCRKXDGxOni79Ql7moEogW6c2wDNrHhyQkEHB2gTyqrr4umN
qxKSdveoX+C8B3fLbiLB0UQhpui4bGkkgkNKXaizy2UKg13lyEdPf7gmjcqW
fGmtXsuWwb2gbseSjvYC/ZKz0roRMps0Khd3M4CCEjKXaOxQm7NmPwWR9wLU
nDgBzMis58TwrXlBmaI5yDoTjOFcxldoijwu3mO4CFgeWVHwySEv1sdCxpGA
viMgslm2eiKYCFBWSgfo8NKcKy/62uKydCP1YAaBQ3rlKcM1XbJ124OfUBir
HVrEPTfReFjLSqTFU9RCo4CCb2jDuOyGLoWrOUulV0AgBuZ7P2YiQHoIx0Nh
whJcPjjXth1B4T9dz1HaeKQVl4AkVTH6gHyBqab28mD4yvGnMbTiCs6CHqGU
IKbIU+snK7NdiJJT5AKAom6HDZAEV2epLSH5pV7XGjyflnpgkncvFibLYHWr
zpq/3NhI9R9XYfXIQfGuOAZr5S2rVzSC3VKb+QmvI+XQQVX4xwvdqWm4Ulqo
QmEN/Vtcq2fzKkuqp0I7pOVYacDdZuUUPys1kSyPmQupkdyJhAQCUhQsXpQR
Lom8X8Ow1aT9HBcQWGiTe2PphbhNBeWU/Ng1hO0GCSw2/oySp4+0gtmXVkfG
fGHEVADPmZNS1Xsqj2xcznilqUedycuZpxWe8PnkjC/orIJ3yDge0C+FD1+f
WNzF+Ny9mIidvvvgznkrWw8vkZIUgBEq4ScqWAUKgP7Ne8uAm29kWO6WY+tF
1YfO6ikWofMcLV8FF7zCav9AQAn5w9beXbCFytpELGq96Nfhtq44zkAcIGsl
yiJo2g6RdIsme3CLb4tcUCoasAl8NkM/hKmQLMzqmB1yNoLUa2VF3icWNrQx
LkaSAStuwKQNQJOQueHYSgn2oh8aQnDe0QO7SBacISuybaV9OFG6D8HNpGUy
0HJ64gdx6Dlx/EDA2hsRGSJq7w+uZABT1+0JLau3977xZ4VUYtNJhayVky7p
ElCSxqmHVSIUTGlXIXVBZub4euCol0toWHwlr6vSAzu9f6NOEnvJtFmQrKTs
UOPbOAxuMlDajgI6zfpIKrjGpzSdnQGyhpMNrUIhmy+kVQwWzyZf0Z6urQwW
ceiXftSpqWorivKUGPJhFNK2Bc0o6Qrqch+Cg3GhloSJi/iYswxdwNb5Q68D
hpFhBy1wUW+TrQ3tilJOppLmhEVJ0oeUE4fJxeRLBYdyJwqvMJyJh3cfsTEI
dIKpW2OU67zrtsrLdOHg7iiIgJqngUb6O1ZF+VDwxZ2elxDSBr1FAvZoSFqZ
Ni1nUdPikq0iBiZMcjqQjCMXVIpXbHkOt/ZF0iKSOsnhW+hvk7yQ/vRxOZpf
eEXM19RwYR+ZoHtkanikK47uFGLSUsS3XB06k6YgqlKaQSqtIEu2CmkbW1bE
HXWWuyymijTqhAy/BFHywHHlxjB/EoQVCy83aeEDAqe9tLpmSwDk1VZj3TL4
MeLS8gXQIKdR+ug0m53qwuSsKgSIthxCJLyNTc1qJ3VzNJ6bsa6Iac5EVnXa
Eq5YADPaoR+A1CsTIoxZcnvhp9ms5Bd662xot4ic9M5RGWt86FVeWEK5r9Bt
dQjlxK+3fb1S84TrqSfue/+zD37g2QcPP1/JmTe3afkrMri8fxtxyWk15d1N
lrR+50PPf/hXPv2rv/65z3/yU5/6vh/8ofRIy5Pfiu9tMWwThrU3uvNKhSY9
W5n3ys1/1uTm5hCCvzMZgsnr6Wfe/VMf+/ghdofrMMlDj775lbCtvdH3217X
pz24eXD28PjB8cMM07DXLHoFw3TzcmfAFeZ52XPeynVesnzj8PkGx+Jux+du
xORlXWLbrfo7UVAynjUC9XK3rDDl5JvZb2Wtc7x4ZZl284ov/+KSd4sw3lCS
vg7GT6348q2aH3beJK+w7NjO7uuN6q1CN//g6jZUbtNxx/u1Q+C2Zm7p59kz
zGvRTfbcDoZTi97x18sINyXg5kz3p3JW79+6YN7SJnQeitsD5BuoG1/L6yaN
vSlSZ8FyU2Kej+1Un3PrujHpOE3Vzi7xNd4B3ezgyzNgNq3OtOfrkRRStryj
uz3f5wM6ff92z9nOWW5qodtw6lZtu8U27BUg/CtC4zjJ178ufx1WvCubjVsK
5S0MXo3j24KNp+Z2sbHPpw+LTTs2vdvx13HAsQ0eG87FtvuDzz/xx1946o+/
eLze957X8oqH8Q++YXf86jTgN37p272L9rV+45fe4gPkcVv6qSde89ufedu/
euGZf/O/fhdf//x33v6J/+SNi63Wo017unN88PDtYNXhOnw+OQjHfdj4+XQd
H/nCU+NlVsn1BZ9txORgcxypT/3iTz/y1BP3MWhlIzcujaceXUy3i0fQzM4/
+Px3jF5viw7zqcfvY5M+8eNvHOJiS+cz/MNU7a98+lf/7M///P/T/zvc+fXP
fX6RTdp0h29ffPGfGowtIN202DTZsGP03dST5Yebh6++8tWvOicXp4tZOjzy
yU99ajDmeDJ8nAd8/tDzzw9f/dTHPm5kEIRHPE+fD2u5MUqG0Zj5/zustaTZ
DrBMjTws9MXf/M2n3/VuEGDT4UNkY+t2HuZ86aWXcggOCBggPAkYdRiQY3eY
6mDG8TTeoTgNPsA4xm6Dm5FLp58U4hbfkj585GMfH1AN//d7X/rS08+8Wx3P
KXBE4ODyn/1ZYfnh/uk9AokVlm4/9Nwx7ocxo0ZtxWz6aWq2ac2AkagkC+Pg
Vds/8ub73v721+0e2IF+TEie/GR/e//+6adf++a33L/uaFFeXfiMOd/xna/9
D//Cg+39uzjnNpDk+Br3dQ9ff+fTr/2O73hte98urmITLmJRiPMoMu3sPK3Q
lWHEmUOFT3CWEdjwWi2vuKxiQcMm1kqxoIWSdzEWdxk+dzkmYvwCAi5rLRgK
eDdka3AtjkzS2lG5McQkQORggGujyEtTNA2R4A+RYaAWYfU0odY+GrxpIfti
rTdpAUkK/YCeCKDELtCAHKciTlV1wdhGbvNPuQKeRMhWWBqQRJpwI4oqYPEl
DgBPjfjGUUqEEU8H71CRtYULtKmymAEEeoIJoZewAhPAAW6xyIAKN9S7ENY2
WZUTeU6yFpwdwC3wrWWVEC6xwVSFC4akHFmMNOYQIyJOY3QpmqQLZlSWiJyb
UWQ8dwKr24WsWwpyKzgUF6ekTaJ54e0udWuVbhcGnFwT0c4aK6u4zgyKt0DL
JOixVo8PMhkkfK3uHbQIboK1BMWmTbipgxsjm7LRw7cIKwoDQwpYYRKFMR3g
chyFmu6f7FlwxRme9WhCfsfgah0M4eP7qh4Vh4Mxi62GuyC2pJIq0mgbJQWF
Y6MWctA3McvStrEqf7Czndr8pnKTg95WqdHShUcWQv6QgLYJLfJdTRq53Zq8
hHVD7TDvEGUtOikXMhkWrkKx1nfioK0l+wLiieyVkioWlTq0CmWZjhWBiqbU
eqWZnGCUgHP6BBa1o/gkni8AcugEOlEqYMIKn+JI6C2IbzWHKc2dRdhib7RV
c9DY96CWhIyV4DY+Lg/mdE5Rxq+5hfDEpzCJLIM5KC5BbKnyWlkpOIauXgof
iUkIt2PFLV9oNqS3ISg2idhyWpUzyCnaYbmIVQtmBrRJgRchvltrCXhaWMgV
jfWzFR/9xENWF0IuBFtVZkOGI0ip0SYcurwBieKp6ZN7nnxmm3jLILeWcVoE
LaGIeK51JD4+yYa1JWlsFDQKih4zLqKFpexDLRecERvclwaAzsNjYlYntJoF
nHTiheO28FqGwLWwWaQsHFO3JuBjP7PYED1O8/zxF5/yM/nPfvLNvMph2Puf
fdC//VcvPLMgrThVzPaf/87bfcBTj7+GFP748xd/+pFw7J/fArzvPQ84T6gF
bQ/GwLCfe7PICykGjiy2HT8ycx2GjTVr073/2def88hvf+ZtD75hh0p38n1h
qnKYh3EY/JJweAhO1jLmh+u973ntctNJzlq7/gsK4AmHvAWjlNm0v/elL/mJ
8Yeee/5Dz3/48PPweTib/cpXv3o6RpacPdz/8vEMuaUq3HKRGgg/HrmzYpyY
70fuT7/r3TaJzcC99Kb7oxdeGE/gn3vemTzsUPz8/zBm4VukDQFiGX1YZRhp
5//SXw3GDH/BPnWNB9rm3XD+f8AtDDtY4kfxx3N7i7Vt6+S8emFn0YefQwgO
gJ/+iv75g7M/9bGPH0IwvBE4WDiehxvCw7MPPfKYI3mY4fDIMXzPHf8Fgcfu
+37ghxzVwwzD+f+Xj0EZJ6Fa2Xq+Hz54iFl2PDSDwcO6Hzmu++Fh3eGNwMHs
wf2F6wnq2vHzQ48+5iMPbh4tP7Du+eePbwROAB7sH/75A6M0WOLn/wuivRs/
oO3q6n55gVh4PTrB+My7Xvf7f/fJf/lHeNv4lb//zo/+5Uf+g/0OFdYrzqZr
uu5jf/nRP/ndd/j4f/2P3/3Cf/v0e555vWmmX5Lvw7qvfej6pX9yfOptjz/g
c47lgA5SVtvuJ5974z/7nXdwLv+jLz793e95/VKXGJsx05YwD3ekC2/OqZHL
86Bmea5xuSRfIj6BKtK604EJWhdnID67FNyw1lj6+YTB2esqUcTibsTnbsZE
GlfqJ1t5auspQD2JfPbLHLFHcFpl41nuFnhcfYkj2Z2xt1z6vnvQFjSBJsIb
Uhhq7UbM/RE/VcaKZPmWj9raJRSs5XD4VsJbqWURNbNHGx7rdqx1BJfMa+0A
qSG0Lmvjv47gi2tmmHeMC/SNzgqjH6/CGeGw4ChyPGNZWCAWhOGCjLeq6rO1
3m2CQog+IWmZYv2D04bQ2/iiIxoe+jSzc7Ljdb1j8WRxB411tqfwJmFj9tN9
KqBCb7DFrBV+ao0g27BdQquPnSbY7sZQOYOdfmdACXe2wGe5oXCAtyYXnMvc
mm5bZt0yQmc7C3DAGI7dAQHuiUM7Dk/DpTOWGuOlxkUjzjuy1oPFgIi1Hkrn
CbfikBc0YPard92tSRPnSCd4mrWWHeOElL9WEVyNDXY+s/LHneekhHx0YKRi
PqMMcbq5160Gi04htLJwiUR3ilJC9YKUVkNmjsMF57wDSzCyDf64SI0VVg86
KbCcEJK2eIFzNxdOSDPMd9mop0w547C8j5AiReq3pcDR69qFxzrI/oahE0d8
gBPPhcU4QyEGklADCgRnkJ9UjLHDsYmvZRrufGY3Rzs1jlaOQUJOWO1GWmtU
OmhFSFs/BeJC7IXGk8gCREeaXi5bVict1h2ybxuC4qoomeuysLCnlsIBXsga
qi0RmF1AXFhVXL2dxtwxUk1Bb9lZ6rH4kHLa6gQvEOCiyflCtUyzmOUO4DPz
O88Ib6etHRJ5UT2BGJKqhC7LQCZkUAi8xjH/KZTqTueOoL5viDxbawCCyG/J
zkAnaSe8i3AhoqIPbfGyBZGh7ZgHjtsYlqNW/eo8FguGSxQgMIpq8bg6Z4p7
4S0BN65meYo+9TAtqLJVwiBq4pqmj4mY1iYfw+77mAWhuuCQUS0Ako7PRnXJ
K4WIG4fbm0NWXaqMLDLGc784lVD6I6m4iql0bGCDVDpLajuxkQLEamAVkLYV
W444n42TXhlcca8XcODk8mSXiIM2QBux8PJBBKNC7C23Fj5XgJZVF5tfLyhA
z+sIGzAqqod7Qcq88EZ3Y62XbAd0q06qznDxeYs4q0s48r7bcqnkM/Pf/szb
0NGlb08n1Q9QdTte/HbAlxgmOcx2ztH64cHjKwB99mChnP8fT+x1/+7NJwXo
Fs7/bbkzz/+HI/0Fmj2kzwHJJx9/TR5/uAlZFpXuwvn/b33mbWO6UWIOroXX
CoPlVulIYC15P/Kxj/shv4MzDH7okTd/8Td/8/Dtr3z6V+3Z8SfO/ylrFuTg
cMf/1Jxq4nGJw83hgPp0ikvPaqP10COPDbYN5/8ByQ899+HhoPjw86FHH0Ni
bmHnwPPhuP4w0o1BOdiM5/9kP2pT7G91woMBllAtG/azP/+p4dz+9M6iXWiA
WMSGr4Z/43AMwSNvliKyaQ9+DSftHzn+GwfixmmM/6OGp595t0/oOB+idvj2
EEGUAAPty8M/yqCGeaEXxQ5e+7qDSceXCz/4g14FPDru/sFmUicf1h7COlj+
Ry+8cPgcVPfwYWDdYZLh9ZBXwGF+/P2/S6V5J1AHqg9uXmE30bTdz330sf/3
f5lI3v/hO1/38PVIAxPG/QO7/+nvPTWV73/jP38zKxLnrxv21z7y6DD4rY8/
wPeXWOj481f+6lumVvnJ594Ysj7mNc0jh1osF1ugXc7jpz2s/MEXz1lZyHuD
rbNRssMeSVbR7ubMtUKgIey2hcyxuOvwuasxgS8acV2XQUClYMVgWRt1OKmW
W6UfuK8TiXCnRMEAMnZADCy0yJ4NyFehSUHhn9vwwfu6Tn0xgQ0HawiW9Z9u
27ZV9HxDgceDBDGSGCAIeOyspaRjCk4Eo67uy+IkIXzxPtMDX9n2x+GKkE6U
Nhnmx25GuYIhqCldsNbrOH2FnULmpBnsYeVFaZi+4MCpJm9ONy2SCyHg7ZjP
VmSHJj4BTkc99FS33EqCM+WCApBGEZJbumMbWDbYnbVDg5bFine1mXgaSt7t
EieJ564w2GnidKKNma44LOi8YqFR5pMWdra6z4ITcJYs8Jmxe5WNZ6daQdmd
+ls6mugIH9oSbuiwwo9osBln+dKo8XEEDdDPcaesE7qPpmAIN+8aOiGzFrKk
FZJifHGAJCPCTdENFAKNmp9mOLs0d8jIMY+2kfMTtnk3C69z0lEqiSNIijQg
7NT8yJ3EUKxaSmNjDcDWnYrrjouixHdhEsxDjF0IJajP2Yqpfm4DBER4/dyJ
1HUrkpW0pV1uWAyR6ZKndtBHqtsRmGPh8+QNm3099bKivO3YKhjjuHmL6GU0
OS5xjPAKOHKyKpyPpxMhp+xb2lMLVcw76e6MaVtyX7dCwknLd/rMXO3I/agn
6jjJIJ38yFGAWE55KoWyaE4WCZ/cfy6EY8KuRVpaOlK2Vo03BDglWc/Fr2CA
lL+oXcWletIpSoaJhUlJG9juPM/fAmSAryngN3lfs4A9UdW1w291sItVhMtH
ihfUqyyjwSYd2drknUZT1qKcqtTVHaEOTRxJjSifVBMNHDQ+c25ZVOWn6bbk
yBaPF25qHV+aX75DWaSRwezCR40FW7Lg8SSJLAKs2wsdyULhI3mhEE1Hknub
pRGJqI7PAY0Q3LGsyJZfqCirk4oGeMPGQfHXjIhJUYycv6Ye/IkPPOyHUX/8
hafCEoc7fFr1Cz/9yPIKj7/3PQ/ws5j5qv1PaVo/5f7Ej7/x/c++/rOffPOf
/v4709H6acWrrS29/ewnH+Nzb7J5u4xebIeLz/8P9hx+ra7HDjYc3Tw5wuf/
B6t45G+l/2zR8T+/4+AQDv7PHHj84eYyRXZ4JKB6+ocV4tfw61PptcKAQxnH
4cPwB/bj3+FXSxeH2PbH4VXK0HXV8msCI+0xXi+++E8P97/y1a/+2Z/9OX1l
Hwyon/35Tw1/YW7n/+Pjw+XnwIefh5Gld8OHwyqHtQ4rvkjGOGhffvHF0/n/
li3hK7tm5//Ph+X85/BW5fgPE87Iu+Ew/HgSPg7bBjH8pHo3/BwOyQ9LyNJX
PMN2tPAKqw+gvRiDUhSvEDu/8MLokcemqDWMeemllx565NEQXLZ8QZjjw8na
AeFEHol7iONCECiCsqSDo8Mqz//oG4Yc+RdfeueP/dDDr3v4evfA7nve87o/
tBP+v/+5J9etbLs++9ffOnz1P3/h6fd9z+sP49/4yGs+/P5v9X8+8L3f8+AU
Zw4E++hfepMn5tsevz+jNzz4c//ZqGO//befeP7HvvW1D+/ve/3+Qz/8hv/j
H77r35z+ucFbH7+/qBppnkFw5hk4MQ8Ly7Z6apsfL+cM3+Irtu2qGHkbay31
kYEJec67C5+7GpOlzj9jLT5fFWaU47kWLNO6payxqdmYyTyaNj4MnpktenQV
ZkYbM+V4xn8ZJ4kzZPv12uZpGcylA3UlA8rPM1SZmP8seJfRSPsVvm/nYJ8w
IKdYGb5Zw1BYZ6I/DjBWe7gzY6s2Na44t8SsI1M0mIErPRWZOaNg7ixHKmJ7
JTZPgjydmFMuL2h+urOdB2fq5kQSxWDdBOxMydgqCFtPN2dFTaebQjmlcssJ
ka/BuQpjtuVClV9Djkzk79lX7ugWMbIR6ikc5uNePhssKSO+nPLrKkFNv+bE
xLRFdxR0L5YwCtY219/wSOHajTE6oyLPf8saMp8yEY0AKfmShTdOqCKzFKBu
WksNKx2pfBwxnApoclN16So2acFC+ZDq8lRQOHFqmiVtieJphi1yPiag5P5s
KzsPI01SUrrQK7KhaITqLScp2HIC0hD9WlKuIjFyuHNMM9TJkZI2gDf1SHlF
NnjSwkV6EGuNsBRiTuYVpYE5kBWPlwiJmVNmOZDzquX0HwdMJcLEacDUnRAm
7hkYitlYVGpT+R6fvelauuNXYnk1g5SAMhnHYdUOIk2I0rNUQBb5qatYvJZK
uRCysMQMGsuEYRaWGTU4GTNXfXhap1PkZADkpqnmgnuVRs5ssiZa6NwIVZ1h
FoftAAWl81b5sMVnD+jxw1EewyEzxe74IZ/h22zHb/ndwfFo2iLy4MM7Pgk/
fH7vdz0Qep7f0n8dcHrcbD4xM/z9P5wi844uANX8iIEzGJbBvNry+b+9wtg6
uw6O8F/gjwOuYiv4B59/Yhhw+ODjh/8EkBkgq4fz/8N1QJLjMpjxG78U/2yY
cODoY/LhD+Mn2AK/wv3xbPbKV+cx9hTO/ykEJxxefPHFL7/44q98+tOHAd/3
Az8ok5PvXz79M4Ff/9zn7Px/O4bvFPfhHPjw8zDmZMyWk2hpsBzmH14Q4D9o
ozk1nP8b4VHR3JglJ8VpgJ//M520NGyHf5jgzDenAI6nWECJMVz6g36dFhr+
i0anA/bHaEIP7nZJrDCeHH8dQBvgSodOzvzjuvqKZ7Dk+O3g1zFqV2StmWfD
xkP+Q+xUWNjyR5UwUbKGuPibnQH8pZz/j4+jFhyDtTWebL1rJWkd/txou9n3
X/0H7xwO/x9+43447BqCsmq73/v1J4f0+eFnHx6/2rRPPnn/cPOF/+bp7X07
Mnv7+BP3/+t//O7DV3/yu+84vmW42npE3vvdDz7/o2/4xf/i2/g/GVSe/w+z
ve+7R3n54q8+7nwbHPyPf3h8YfHLn3izZZNmHM2zvAKfwzyI1GY7O49UAcdH
xow9yTZ4kUpzPPHwLk4/t0a/s9eSfBGmueBTdtyN+NzFmKQdASlhPBfyya1b
uDLZccdZsorSfFpOmk+xLXT1apXg6TLIep7WUncYNHHtBJf7CymGOMcu8crv
p8J6xatTcHGH27Zg8zbcXG70wRJVcCY5zrhtGATmXkBeGL4UeIMjnCxUNK+C
MdtlIMYmWMi+6yYldbbSA5Q5osDqtoLWcmSU6ss4MuCv7XcIhzaEka72q+Jp
/ZKTZ7hDq6QthrL0aruUm4HD3mn4t2r2IFwFtQDOkBrUkm2XAguLlaVSyDUi
HsmF0mZUGHXEjFmGm0QMMsYZQj0heaq7bBJwFIhkW76SJuvjRZ4m9ZiZWfY+
cdErRl6VJ2dlyNZEoeVVC7g2ND9A4Fgg/alCJUm5Um6ETLki9SMHl9Gd0i8u
ARip1UQzS8cvQ3yZ58FU1wHtz3GScKV1p/R3nEfvMIAb6ntF/bSgeIrZDEtH
I6mNpIlkqICj2yVwYOmgXfFsjANvi0RjlxvdCjFW4guR6soE8GobbQjGewfF
SR04T78useJWxvBgSJltnYJ5RfVs6dsQYs1ZKls0Fem5aLKYRGmixhC2qofp
PIR7DH6RnfuNDRQ+ZMTyyq21YUK2qV5X1dgzJVhbHkRHPm8F21IfSF6WDh0+
OFwTNOAoMwJGuWXM4sRkzkqENUG9CcizVayuSIr0YKJ0rZkufeNBdD1PIQjq
2qRIaoDicbEjI0VhkjBusNgTAqTEQLfALicRqMy2k/lt/NbnvCJwRLrl5Mpn
i7UMqbSdAQ2PMxNCpFCIt+LsVUhM+AIRCzZnqeF8mWFpYqxjyOOj8kc1kL9Q
8l6xTv/IAc30QIMY3PTUqPCqY4GKDhR/lQo6d4lJgtz4LXrOoBglmSXEqgAo
jsc7F76xQt1koWPBOQ3etHxW/+Tjr3GT3v/s68L585/+/jtIeVr+E/2f+MBD
owGb7Sd+/Fv5qcM8JFZIZD4G/9Pff+fg8oV9q3///9jw+AV2ASw+bk/1ysAU
48JsuEALkc7/w+DN9r3fdb+8H9Fu5PD59Q/3/u0v/PQjfGh/AhPhuDCS5PP/
P/j8E1HxrrYHtIvzfxPMC7FkXGI8/0d7oNdme8FqYzDi/H8jvl+QMQu8JpAJ
Dz+/fDr/f+iRR4f/QE1c9AT40+96ZvgW5//aMNs58OeGo+bTP2Fwqvta40H0
8J8SOizK7f3wwc7/KXMBkRR6S5YtmQRyBq2m1wpDKIcQcA0dwzf8OT2niYRD
ODlSEafr8tTI9gtOeYvFYBid/7NScY+3HVLS4IL+HPjj/yKDYhFai9HyQ3Bf
Ov2f0WNEZrD8MM/FZuv5JVJmZpipL7L9C3vvQ+f//hRXfwXZ3LzYtANFP/BD
44vIn3zuTfj2asiR9tvfet/w7S/9FUufq/avf3SUl/d+9+vZ04tBfD717WMK
P3k/mHDV/osvvTOk5HC99fH7obqE3n/9S8e3nP/b//iO9r5+8OLCSsa6a//k
d4+z/aMvPh0Ve5OiYInpWe/z6KKz82j5dnzGQlA85cK1rQMBzpg9/Jkjde5a
wrqLDdy/kG7hrsXnLseEWohRQy58vGmUVY3B1JMBG36KRBiAsEIa+LbcxRVp
y5XDFaTGb4pCYiG4E4CiTm/Uk9HCC8gpNWmYPxVZqjXShsUBasOmJctRFEjt
Q5/DvRwwNJz1QY4p98NKKiGzkyT1CWoDFyMSbUFVGKXlkjKFH9yEYLVs2AUi
tVVHMh9aKNJAjyJSoUmwfLwa05N8p7ZBMpqhC5nYXrALZRUz0C40BBZNXVRi
x6C1F4KGJztlhCzXjjzfJBe4OeGs95+Ygb3ekoIFRbLQc7BiFrSYIfYwremJ
qVnRCHkzgJ9ilbDUfWGvRwstZwPBJAdNtI0DKZsuGEaHJSSIq9PVVpajhjNl
OmdNckFyXFLsIgyjKIA2qHfMzyw1UtqQj4KAPijGBBvkV0wlg13YTZM3Vvg2
CqZGQSIeUdLQb9KzVrmQfZ5lSEZlciHOY3KhN3DRKDkTsi/KqUiZfCg5QIkZ
Hhn3FGzVRpcrpEb4drFBs+d7E2HCpgUCwiV0EZbUWwm61ALtCq5Ke1RskUq8
Yig6wuQLsYTX1YQKCrwpYsHMFNlRMYk1msORySwFpYIIUZNQXsBavTbcbUZF
krZKdY+SJRNvIrn4TqykW4o+TWsxkn7vBNoFhfUCnnKPoemzIXZpptPkKra8
i/GYSrA4ZFoT3aMrteFKB8jIIKdWjpmum1Q6x95mS1rN7CVggwIH+SXtwjkD
F+XQUYcaBO9ClINscgrQ/NJmUHSQC3l+Voygh6Q2VwxaK2ZbJrqnvMuw9FQY
A/lzcUREWrE5wsW8BavJGNU3Ju1mbNiEIVE2lWwDcyIPk7x4xfceMumPoyrl
D6knHS9CLPhX+pCVgS4Sc+pCncYs6fCrVcTIeBYclo4r123NC25FkBpkraLk
W2Df4FArRRInhYyZPxrglagSqCBTpGOQNc9Z1jrQRqalGfg4+niMb/76CTz/
DbydaR+f9b97P92/9vs84fGfDBjTggGHR/gM7ceefd1wijgewU2d/1NPdTHm
0Tjhr9Ejv2aPOCb0E6DxOw47/5fsOFx6/j9urBxYftnx3u+6/wAgXgd8/JEh
msFxx4dP+F//cM9j/L0Dgz+e/xPxxKmr8fT7Q889Ty87JL+CJQNLh4PZiwCv
VUN/xM9v7WBn/PZw8ytf+erh1z964YXTEbGkzDDt8K8Dnn7XM+Hv/53Vfv4/
/IX/YTzlI/LrMP/xPzVz5TZHYg8IJMy9YhoNaPXBpA8SaJ7FPvl4/k8VfCKt
WvqLeuxc5N1TMMz+ccHxT+ixD9U039BaG9znQ3WemdunwWsOsZ/VD/+1qI98
9GNOJ0qN1ng+TjX+Lxd89GO8kFjOmTXSXrqIYfCDjzzqOX5xRef/hTS1cIGv
YYnjf3JthOtnfmL8D3DtX7vPKbzctsN/0udLf+dJn/yf/HdPH+78n//wGSqU
gO6Zd752mPCvfeRRXv0Lf/Px3/+7T/r1z377O8fz/7fdn9X16jXd//3C8d8R
/JWfeMTPQnnAAw/tHvu2+x557DXMRpyScZpb317O43yYmgc95CbS9aK4SXTd
yPzMjUWMr7CFIT13LXwrsXCvq/S5y/C5qzG5kA4ktm3+LKtoFKLpR2CPPRvc
DMgwIPoqPI3c5PuksZv4SIVnq3NiJzKoK6bdbC9YqwMIGmh1eTqVaI+ZLbzg
GTYyIEQtTU7vr8NXiTBpxThnjulkOCpgZXJNIu+cq+gIIdmqi8qGcnVN1TIK
baDoQm8GO0OvHtkbG0Jq2uOD0whf5dzEhCZKOtWG7Lza2oFDmp+3PNIPRIN9
K4oDtDKmaCYn8sssyePDHdlI2h7/os4pPVXQgF6wuI0upNWzGYxwwpwN48dL
HCaBsp34AK/GUX4NulqSJNI4iHNmZjjxwLPju0W3xI4X2rAQ5g8wRniLWgAb
mFTFACRg+qCr4BS6WMuPHS50cg5iBhOHISUtJRzYcSwMQ+z9yU7oSdVLsCDT
riquuEiJQCCIOyQ1QJs+jDZLSYpoRFTr5KWNgJI8MvbC3v3J+Sf+rILn17+1
CJpGiXkxzfbK/nbh5WMjK5YFl1mBP3LQYhGYA8w3YeacC1VPOFGRWceqHAfU
ZV2GnWJVe5HiWKY5/tIDFUF2qV5VWYK0tStAjilQdoBVS+B55+FG7qSnSigu
YHwoaoISMWp8I1zoXpF04k7A84KeyrXygvSKdS86679uCrYstJMMOKgyoFZK
yIiZTHiSDnWWmswojFgXtKH8lWEXhJ5mGdQvMz+KfNpnBfynvirvs3gSDqqc
xBNJ4U3LyIB+8icZU0tDbdAbeJio/ZhSLRBV+ByK/tYL/QQ+041H3IZIhQqK
HVrZasI2zj8bOMS97sQm4eW/YNQB9tc4E8S4KH9uiA9jv1rWBYGiinhb1bIK
9quN2ra5uNwer8OH43W6eWkDLmHDr+lJ+/js1caPqX+GjrgPn30tP5o+/hfs
T5MPC/GB+enfBQxfDdO6zcfPerj9GCvAr1Xn/+Plxl8Og8dpP6vn/yqhG4f9
4hJg/pie/1/QyGFAeEmxsBncBn8JcgBheMoHH7y7MPP4gwN7+OCPH18WgBgb
/+8jHe4LRJejhSEFhmv4i+6XXnppOH9ejJEKxBih86foDNl93yxo5PA5HDW7
R37k/rM///N8njzQbAj0V77y1dM7Av5j+41BvTks4ef/PHiMrxlwmPn01+Y/
f7gjB9pEfjuo1yQlZ+Hg5Tizm4QxxJDDyAff9OiAaqGol3bZs8NsB/ufetcz
zvMkOBv/OfzLCAfW0+SCYse8ZS/kj+qHkZebYCSHmJ+9OL1MMaw83JsLCv0F
gT9Q6/SPFMY7bjmp2QbzX4rXh1+Hfyww/tOPkzotriTueIrwv4jQWaw33SiP
l5u/9cnjP7r5l3/0zMWleD18brr2//njY/r89595Ynh2uWmH/8LPb332CZeU
BSF/dd29dPqfEv6NX37bFKSH64N/8Q1+/j+iBwM2P/oD479KeOKJ+6Eqmr88
myfa4pKCzgRgdbrVeS4FxsCEnEeDLxV14wyLS6om9LmMxTlrhVhc0M0qFncT
Pt8EmAzzj3Ze4pHKl+NX0bbTHcZB0zxYDpeTCORnbYZLoHehT5Eab4YmB1Lj
pg4oXYr742z0c5Gsopl9DOLFscj2W1nfXOgjwETkdONWjT/tQ7AtxzpCSnpl
M2+47owETnQtk2UE83IbiRrMuOQoQO0vop3FryELwhIOMt3k7kuWU/Apyjw/
c6CwZ0MzoPYtLnmVGorcYhVoi27ELq74fImnpoIFyy9lkjQsZ2LKblpUB2y8
u6strDI3wBJXD6uojz6gNHhRBhE1q8w4M0PXXVBwnS3DI0HTyhzx8R6Fiyri
pe+Kw+aUREjSC6TemMXBZdIWbSnhC7KDyb9wsy8Lv5zhTBgoDKt9aghTpigN
vKwkTauIHTWhjsIlla06L2R7aGqwCaCFrp5207F/ZkqzqWqVLxStmkpkGsDb
VS491U+Lcq4mF2GtS7Y/QBQ2CBublgkgboakS/jAjEytOMMV14uN5J0lckCb
6MEIS4IEexah+2L3NSk4f8kqDmv0OkZWJqwDjdQOucDPkvuSfRq7ixQX2HO5
Kch5teVeqAxlhaToP2qE6P+m6u42NB4tmedd5sPFZdKWBOOC57kqeVJ84MTJ
jEXfldPHCXbpnsacSqGJRNJYb4ST6SiAwiFFAc0YkM+sgM0MJhNsQQMUFunw
w4SL5O8FzUxpgl2PnwzIsyV0UaM2XjX82DNrLyzJbSfVqZSMm2A5fyXJHoWC
CpnW34VMIqHRHPfOvMAkRHxBO5o0eQifQ5G65djA+15pEykKdzaMUtCBfH9B
/WfgXiRMpTPudRSQy6SQGkr1dKNTpcBNC8ICwRV6TCKfqwZs9p5ks4gWaqb4
0sdA8FbRytAlonBhu2Bvz043N1Y0EUr+k/U/+PwTvnfmv8z3g/rf+sxbPVPo
5PzJEfnLTfgP5jz4YO+k8j7BvN7wfy3ntLRZeLn5teIw3zL6Eg6Oten0M/yT
ASkilwg31xE9/39yRGwsN8fPbMbxf6cYgB+nff2D+I//jMhcbcI/i2B6DzPz
3/9/4sffgJcF7svV1v+jTD9jA+wVycab2DHclxuWst89/Z32cKb64JseFXW6
lOMXbw/sFHcju0LMvx22G+Ow8cR7Y1Nt/Pz/oTcd/ysxv/elLxn3RlOfOh0U
//KnP3341f7Y/rnASZwDX25/+W8e/7HA9/7ADzAghzEH146H8KfxOPe+dL3C
ywjagHDRRxNIgsMm2ZhL08nTzAOkR7+kWFCzjRdtx8/D+IOph5kfeuRRis7G
F7XAjY4f/7tJlwjlhWu+V3A9RRxGftDP/71qmxnjeKutCLHbSTcHYUczMz67
WZAx33v6dxk2/kiAA2KD5WFFZNklouBhPb1BQEoOk9hrhbgTxzyYyhL5+L//
Oxr8lrfc9xfe/bp3vv2BC17RJOJtT4z//Z//8uNj+rzuod1w52/+1beEKuMM
+d//wfF/n/cP/95TC48a6+ppiQ/+xfGE/61vvW+B2I32/42fPv7nyP6vP3zm
+J96u9x865uuf+TZh/+rn/m2v/XJt/ylD7zhye+431ud0Dzg7NePJrxGXGo6
j2pwC/N4mgdf4ONQXC4DLLYFvpRhTpiFhzvog8bixrXKWHjCVrEwrt4V+NzN
mKBDc8n1Ra8Kg7nEuNzxFmwRx7sv/KcL3Bd5/+xdhG4fQl/k9c6hu9zAQfRs
hKeZJ/2wbyuuxJ0FWcKyPLrAc7rXFI6FfOX4uPJbw0BveSgiI2fwdunS/d1Q
aAxP/jw+WAM1hl7pCtZdks32wc4N6EzS36GAory/oLp25Tb7bgJF0DfOcc+F
x9HiemskddxrzSUt7f32mCbETI4IVvSwuvHUVF9ZrnmDGhJq3CkA+XBAiv5h
FArvZ8BzGymvZshgPdaztkQ2dApjYNTC5UsSjaXJU1KEbsH3nVTUflzgWIl4
CInYyirecgClDQGyNSLxihwsP40fAKdcI+FFQ+XZig//P3fv/2zdXZ2H/Sc6
3+65+8s5574CgSSkV7ZBEAzii2SQhDxJ/IUYXLfTgBxEOnVN/QXcNJ6xIhq3
uGVwQkhHBWfGjUF2BzfG2JCOARtn0tAW/xCl9rRTNc04E7W/ueecvdd6nmet
tc+995WEJb+z5845++z9+az1rGc9a30++7z3XjhJzkjAhd4OQvxI88VYMfZX
Jgsq40Razv1d4PwFXU86Y+fXciXpAEs3XzkOkp1SVljWQLe3/paT/cZaoKAc
3DHOHD4pN1T+aPXhumRJahnkCQhd4lJLDUmwHIkZ5HeM1M5uYXqYp77c8PBB
nbbU2DtzEFkEEblgJ7WWkZJrBgGNndxIUMuWyBkWy4GWNhe1/aGLoCSChsR0
Q6qyywmlbajLvN1xYQu0ixCgkZbONCsxrG9QtiDUPh25luXRLwNhxmhyHeHn
U/ptAQsHsBJpogYmkX9N4UBnIorECQWQPRwE2gX5Dg0ndqnQUUkiPffQUEvD
RdNWXl6hziQQ3F2gGeN0QOfD+mliixSzSRlhKUCyxUfGRzEXieNvdyC/dnQ9
GtoboESQL0MMXvCCHamBSs0AWgQFcP7I5IvJozKugFjHqzCi2YObyGL4yOxy
97lM01yeVmTq2qsDOoeLGB2kAOWg9BLe3l8AcLB3nMWkT1oL66lw45oc8Z6B
v55EsoAujkuPaaYWJrITCkNpSIp3YYZRKGNlRPlbu49eSrRGeyaaKBFFWUxQ
xInJWGJQf4uSgRu5lml1Cx0URExIy0UzFFApUh4C5y0lPmQfF4vBImKohqik
LNo46XRVvdomKMA9Z7L/vFjDAK8FVBbZWu8EWBNEk40/HLUd84fW7A4jqRkE
x0WSRW93QZ/SNTsYQ9sRFw++7bW8xT1c8IH3YWN8/9a/jn78EwCHAfmCX/2l
t7ja8I764SvxbAbKymgPf7n9sP0+In+ALv4yHxHh2kG+5Q8//9D+7f74h8fj
M3bsnfVZ9j/j/j9Gu7G/cu8XP8s4PIaghmR/8Ob8/vXg3Sd+7n4/uXcwG7yf
yC+4ed+r5GHB8QJ/IrO/knEeDID+kPu08jpsaA9f7d7/+9KXv/zQI++RguKU
NkdoczhQS8jj+/+h1vj+/37YYYv+vje+0Ve7++MLzxy++P3Qo4+ehc12ojTt
/1889Mijh43lZ359rfbsR/7SYROebAavxmMwZj9OeQz/dyDUbphkofcx95YM
vyTn4NT9b6JCr3mHKjyk6ujmcOMxBI+e8SrPe5LtxfCbkQbH8SkXXGo8mLpn
9p8mnnvuuSl//bDHBBjBnx0kd+g1JIh5MlrySbec1MkrLHTPkPGtfmZXdZJA
thK/9k9NZ/wv6DFp1xjBZfzif/j0+Dzur7znngFSfyLwCz/1JoUUjdY/+/XD
E88/+q2HKdFuBOHF/v/w+38Yyd2Np3/xgf1H//w33nXH3a/+/KfezkoyyuZ/
87ZX3/Wq0fKdeK2pdyPIphtjrQ6R6tJxdhdpKIl+6JSokeAQqFBUr8tYXDZX
HQunUBELr+mvBHxe4ZioGaSTtEEqvvBda9hM42xlnDPu6nduXrCNfJRiFATn
wivdGX9xBRHBa8yII3iRp1MXooRONWk0mtfiKPsePqosIQoikhHwtVzgDPEe
YKJL9AaAel3gLIuF6IgsQmUQjz6T8KIYyl8zvXc+eGqwhXIx72iFfoPGhEm8
wUhbizdopSlA+QMOoYp1OOtthoV+FhVEE8EOlHveo3YDwiBlBBnD3Ymg3LDa
Std4xoWsrEKZ6jITjJIOfAYH1hGoiQyi0da7HD7O5YQ57VEX4w9LWmHRjWJe
Di54i+vX4nvAWfZ+C+kLJymd/YEaqbRvP1I12dFc0RKdt1Azd434ucvGXMjt
vI4IVYOXqzw4+ZWiUEY8SbR03ZnhWuBK+7OdvhgP15cgMK9oi7KOoAhOFd9o
jFq+C04N2wshVYnz2WapFDz+jcI8oa4kY8Woi3W8l3NTs5tE1QhM6Qz51SQN
ceetEokCxVGEMV1GNkAQXGPTXeMDViewTCHk5OfUkfZS41T9ZLOUmZD4tmNk
fMemkuvQaaR0pkykDGWpnCxeyR6mDbe1OyVGCKgkmuqGcgy7ymmWENOIc/A9
UVc4HN0Mmklq5knK4RAJ0iDuGF7O4qHihNlzFbhRuBNVzhCIzgqN+YyqnKBk
e7waEVWDtdx4g8IdtqEIc1nFQL60fSrW9Ul+UzHF1wnKyiXSdLa7iBIBDtyg
LuIGN3jrrVqug8uTKQ69Tyd8u6GTKl2FBhnJVMJw5kbxacg7odlF9lTn5dp9
I44ZkkIsNxrseECXL9+BHy+Oz9Y56ErvM9lrpRpU+Yjvt2x1PSIp6fSQp+RO
V60FSdtFi25I3L0Zk9iFScVZ3rAleVQ0aJEbNg9f4LFSnPlPAA9Tf4Z++f/+
Gt7THrbQ49a3ucn71bylv59xlewvLrYj7P+vyNqpg2+ZOvYzThmwB2Fvw3Dk
G//kKw/fvO9VYUb+qr9/Gp6nrPiWIwI8Pg9yeIxyAOrGF//BAw5stf9/+XHf
/W/kpwD/4lvfsv3t4pC9dOeGBmuVLvNj3P8/vqZf0YMLnnvuua9/4xvDa91s
x/HjtP+/P/bX7+/yqfeH/3Khqxgz9W//aSbhYNKXvvxl3y3/wjO/PvxRg+Gu
wy/zOW7g51CeOPa3DE9DhkH2HpUhGGYPu+J05GqChBo2z6/4L8A13FtieEWe
uOWrE3ft4oyDp6uTJyVG0kni/Dmefe9qWTiK89/6T0bh+vW/93a//aGHXjec
/M9+4v4py7/23x/+QMCzv/PICUD4+//Zhi/+w0Ne/+6vPPjlzx7y/d9+87Hf
+9WHnv7FB77yjx78N7//2HDj4U8D33l7Lnx+lNiuCmJkTl42TtlaXNkGPVIH
e6tz3cqRMvHljc8rGZPLjqlbwuyryfOHJicPcl1LprImtD1y/e5K061uFRlF
OzSW1wOzOk6Mc6JvvJRmYRMgO1JaK0HMLybxLFYBk9MNE8Vw7PJcBeuK85NT
16u5K6V86qBuNbiTx+rUgLoGrI25xJepfLlygPJopQSl5SqIMbEujjl74/JZ
rurLqVp2rfSPa5ZK2fzTYuS08p0I9CVROGlthuJGuMsNmx6nxjN32idFY2LA
nYx2KfKBsde1+QUecTqOeFKYfHFp3q1WwxtnNWIxvi/IwfKIPL861Feh+uRo
l3PpajdeC/CJonYFkCdStVSYSW2frJVkQFETMUisIBVnTojwCe/MF1mxTo15
tTzNt5ib0kvfWE3Mcmq6Yic5znja8bo07C5O5/KlLfc1m8BLuo7JGydXItP2
q6BdkvLXaep4ulORunWgTs1Yjlk3QsyZaJVnaFXLJhy5leifyMR9DpbP/U/P
UgU0u3+ZYVdtWk4sCibwfKEQXXe1Xl+vgnO1YU8jcKU6tdpcnNmxOmx8jWcO
r+kkLh7f7sZU2hwv80k3w8g73pH+we+/m8/86i99736cH/r+u/yCjzx+3/4M
b7YfbxmNPLGlbzaMVu1NDRcPFh5d2MXf/+PW7i+wF2b/eFxv/3+zC9aeOP7k
Kw/vEViNLowI81f3v/2b7zKoD3byH/Z98G2vlbK+ufgmob0/85EPfpfPsh98
P+zwOGb/8977bi/3/weIyHcE3YFaHZ8CPPnxjz/33HO+A7w/w1eujoQZN8bt
DDmyI5Jc2GU074Fyu2HLfXUM3P4n7/bv3773/T86PBEYfOf9/+Ps41DjPvBn
PzecfPKpj/Njgv3IX//68ERgp8YokzfyMIKgOBg2vt7s3E026dlnn93fOxzD
zv/zzz//hWd+/ac/+rGV3TXeQoAT/mMCCrx7khwfxHgI9sh4CIaDd9GZXcga
S9JDdivh8x7+yoxxbI+++9b9rrgXyIyzOHSrmgDjLPtg8ZOLIwGQ5kddOuay
nQ9f9S9PGsg7T5bBl4z2YfP/AmscSrHRx82rbvy3f3f8/zv/2//47pvf/eqV
RfyRd42/o+xj//H9CjJe/96vHn5J15989VGn1mq0xPlz8eP//pi5D7z1rjNj
lF/z+792eILw/x7/jsA3fu2hN7zxtU65u+559Zeefudw73/1t97sIdYisnMk
jwd/Oo7jkhiocqVxNjvXYYedht0lSO0yryAbIxvw35WxuPpcZSzGqeFvEQsU
x5c1Pq9gTJCV9NOCPk5qXl+chRcbOrORT8XNQUaoBrmguctjgMx+Qn4AIYqk
ifMuCcVYv2iWYEkYeUdQS6NF7uzMMNi8CuEg21gzdd4LK1iF7HOl0C59V5QP
qk0eHQtoPSafjK9BntKwnSn2zotmGtP8CrFznDfSGKDgjs3tDh2vIsbRMQu1
LnMlZa8TbZDCdLFlnLZeG4xzFo8Yi5hl3pxYLjM/I8MpBx2EM7I/TiGtyE7F
OVK9MJt1A2lirUVIMfRUaCwVBOnV2d/x9g2Sd4WPZLWyEgelE1sZ5coQhEwn
hNP1SF6IG3FAezyhMaFqsh9okECTAPH16Qw5kuLFLCVMdmdQA2+oWJF2NBEX
ozAypUmy3BZrzhMUApFWZN8uK56vZ1HyyJdV5ebYUtIsHJSVi0Mk4YVJFshT
abJk0xljyFd6em6gSMwBKo6uuiPswJx0ZsXSx004GGUmuazBC0NVTiJ27pcM
Hi5gl1nWWAyLBOe35B0HDphzp0ShlBEEhJiq0o3srLplQbbypKuSMw6u19lC
qMkkYntKh11iWkofrzWouawMO1VjURiFi7HdMaqxpohG7QAI0bjWfFOGIjep
HMgtYiqInarYrvLIYdl5BUltSe4DZYkKQgpPdkNyhUqKRNhY4ofeOLQTzEBl
vlQuUTN2LRNj51Mou7jiIN+p9w7aHtuqjCqNLN0C8kuccibvglWKdgxf+sga
DG2eKYIXsVp5xU+Z6LEwzHfeHxagjcbvlD9ed7wNoEnFJO5JqDgyjGE6vwCq
vov1a4O5cuOxGikkAaUcFKE4q/xK4eZwWFsFCnkXrVdWPC85lnLNLGcdcAqV
/FcWVfhQi8vuM2k3fCXlLBmWg4USttmtCAeszgKwbKqKrf3UcXLTUncy0n5w
juhPb3KswdgQepthS9MUe4zjbjRplNMd32X9ie2F0gKTd84/8L579yP4/wj4
yAfvGybyM8evqe/4q+9nKKO7sKOOmrLh3m/MFJ73m8eHBatxHyPu/9t5SPdq
6wvMkWl8y5985eH9gPn4oe+/2zcQ9i8u3f/fe70f9t7Dd/sd8DEZ+X9AfPHT
D+yHOh737A8G5xM/dz92QY+Ah/3//Uf+vOCHHrvr539iHPbwBwUOTyjuURzG
hgfRHxPQnJJCPMblyafGpwDPP//88avsLFM7bOw78YbxkRGHt7T/763+4Rj3
/y1Nht/2c98b3jgI9fgbgY5vz2zT+Mef+LC3cIPNvg88hPjm/W8cvpM/2HDz
DYe3+5HdHt/3HhcyRptx/9/wGU1FmrhemZ5vLkaTPvzhM8uX/ezD9/b3WIXd
ORPnHYQr9IeWa6PSWiZ6CJ599l8d0Bilb/fTH/2oP/jwFY0HF7WSNgcsEbCH
7/nlCkDicxjHt/ptqN1DDz/qAZVUwj7kjuVrCMFxkNHx0XL//v8G1ZkXMuPD
l32Inxgf8Zi8H2b05z5OXdoPkV2LERmTYvyuSCzN0Os+8vDrvvXFd48PFp/5
vrtv3uE5sjp8/398mvm3P/JGQwyFfjD+Dz5/2L3/V7/zCBxxCbKMeNz2/9/6
wF2j2a7A24t//hvj30z5v37vPa953atWMP4wVHf77f/yy4/sP/13f/j9d993
x4rkGowFUE7yi5HYWFFe2O4H+Hn1cVZgl+iJU5c9YlraphByylMjxOL6c8VY
IGGnY3EG7wTnlwM+fzEwcXu8qWCNJaXyQSAj1na64FvzQ80/VqawHMtDttkr
lw9I6z5Zy6ywDGSnLshU0VUeEK0U96j29QO+JQLoomRxceHyGgT3R3x4A5Mp
JO2f5T4bRuUPCz0tVdYwICJbI5VRywdcbXlY7DWZ2cycHbxGCfACtCPEvE/e
CR+YoraUwPpaCp8821oZArzPgxkjIXE9E0wU243xVsGlwBZowVQs/ehiv2wF
9lo6e21F/8lLA2vqfF2zwXlqPi8UYSiDBg5Uh20bLqk7BfZCxrfVgfck3mWd
0cgecW02zH3fc9iAim4D0/7MQw+bXTGIV6oAlIyAC/lIOsNLS56UwHENsYh7
86yLWa0RFs0NvfU0tAaPpJtvIfScRUZaBgEZ6iQRIUXUcKD59LuwQEa99kJA
Tb6kgwcFHHPeUihdn81OqAEDTkpiKeAo+T6AD3VBfnlBhPEI4pajGVtoV7YV
28Mi70kHAJn8O/CQqI5xiJYe8TOhsTMq6SFrEbEaerJNtnlR9vTxwG0zbRxb
qgtWnX00SxOIADYZwGeItgXUMsJqn6NHSk7th98OKXP8DSiJkYzgRXblIAMB
KhmmP+CAUQIdmq8mvNoi0JYvWOXBeI4CF1OMY2T2vRdPGar4pr3UaLkLvjdy
xmlFGWqhsSQlG7zJ9C4CImmfchLZWpUKOtkJrkrpSVS03hUaSPqAIk69BNpX
LXPeOFHKgDPaKXFr51oqtW8F21h7XfHIL+EYenXPL6+PLGKWLxdkpJ/x3tUZ
a0JkFU1oBiqijUcn5gLOgSbdQ6qaIlnNpVRC0J1ddjEaS2eCmRG7O+Ke6Yms
BZjeRD8LtEsZHKR70UWIVFKHY+IsxngUSMQIMcpK4E+dtmg4StIOZLN2gkjr
hd6DIsZr8nKPR2rDlVSXEmcUGjQb1DD7sGh+XNk86SwdkCkQHLCRWh2qGt6v
SuOHusP1lDhJlZEy3fso6lW4sFLJQL1GjFztuccAnk5XcCkqpF9PhQYl2D7i
FsIAR7mXVsf62x29vUAKcCsOhXEVAqm8jKJOcS3zvLAul+oRiriF1d0hWZMi
C2zdu5V1Gh/54H28yfzg217jb9/5ttcMg/uu9WGjfrP79m++i9+6Se+ke4/f
fn8NGXzBr/d3ffHTD2AL/R88wE6l/X94ekaOk1JN3kIttHNyDDfvrv/JVx4e
/kZA+LX/xwciAfnDIF/93Dv4sqnjq7/yDk7As/D9/6NVv/pL3+vPVnzYvW2r
w/OUuP/PXrvvQoaNQORpO/xd2uF74Cj62x2+HE6jgWzGQOwhy8gX+P7/8d7h
C/+f/NQvD2+HX4Dvw/pmu5Xj0Qb6/v84sv+139Vx83z/6X5k98v3oq3MjWy3
7//TEonaToeCc3z8LwlPfNgH8RnHrXUzFZkIWEBsL7taTJ3thy30IQQDIMMx
7IofzmxpKA4o+l6k+TDFcO9gZOYAuXMRLhuG+rPj3w5A97uJBjAZ3E5fnvAZ
6wk5K3eExs5x3hPjjLjnDwWyshW+0Av8ok5Zqu+2r7n9kz//Zk+Z/evtq26s
XEiPlr/tbeP+/9/5mTfZXoTXptG2//k3xt//r6BdWOgPUXj8x+z7/w/c6esL
v+YrvzKm+S/81BtXmwv14vD2p//mG4YLfvAv3+sVlkTSV8RY+KMdisSjEnDN
cdADGz7wxdtO5xK6I1JXWRAhFkTaq85VxoJXTFOxWKnXLx98/sJggp7NU5vt
sRekJDtCxhHg5QY3Y5rjtECzNYh4zWPCKZVBCiX3eDQFu8wjB/Hx9Y5by9tl
0tXoFLQs0gHH4GL9zghIqSIjpZdjHHZxhOyCAkUM3KEabsM1tMuHZiM3ouYL
RZzQuEgGMFu8EwOrz/he7Xi1pfG9AhQpY0XKC6uYRkJzn0r5GXKHLN9eBJvP
AJpcwLrhc9FoXh+1xYK1F0Ik2bXYrUgoOPFjMx+r8E5jeqEIY7uAdS+yThgr
AS3jouZF1hG9vevQYKWuSSEVSpw5sDyjb3doRFYbyU0o7SZ5ZDhE5suAkC/f
BSUhpdCjXvMSXjzVVKWdT7PZ1oag1pkS8iyQCq75a+MtJf7KNzQ0yiGUHCmR
msCWCDXtpURqSS3g4GJjhGCkipMiteGTSHOeV6K8rUXpTF2QnbQwXXyL1OBC
THtlRCSHFJ1ApDSZLYU1GaxAbSbUkoZCJfUYUTLSysKLZqQf+pyQaIR/MOCM
NBAk5A7HEUtZcKYzrmy/+sxIfkYA0rJCE03Nww4VEIBWj1RnZ23zkN56yQBF
I/hbTpYLniJaS+Zxd0Rb0Ew5LtPulLQHgliu1FFwipAxUSnL+PlRCH3MEe5P
RO5ASC58zCjS7WB80XWQBGnmrgIURdmSZe/ZJiCDjMhLYxCAsl65iqaaqI5h
zwQ6Lc1Oqskuy5MxlX6OAnBAvaAmNifvjqGosoB4m/V5bGUDzvEMbz2daeKc
EeWyVXavCtQmGmPNUuwryoyQWiYOcq25EJpNpExs7SoOM5G4sQmjjZqm2cT7
ut4QioXCaj5/YZ1eFIoi7hu1GdLKYGZADDEZ6uLMF01sM7UiGRl4gX1yGdNp
dibXu6pfkKQHeZEM4g29wArq5UI7l7o7SVJkVuhhVKAIqLB+IWK4mNTpOXHm
7LIrpw7etP/ipx/wxwGH30hj1/Du+v6tvz7+giCZjv+awM//xPecMIZ/T84n
fu5+RqPczD/t0eQjAz56ecu769/8/IN+nrfocb7HIPfevP0qm//Dsb+YJ9X9
/91ZD/wdEEe+3P8P7jAs9npLP3HB8BX0hx5+lM+H75DzjcNruUwBXPHv/6FZ
nn322f2Ln/7Zw1fEf/qjH/WP8P1/NZj2gbfDyeHr5cO9x9/J8yxPUT6MKI3h
o+SPmrQNQ7Hx6dhm/MNE4aP73jD+z4Kbh/8QcTgzfK/+uA8/aecU7XX/f1tc
OZjXxxAPl+0hZUvOps3ej/PJT/2yP9Y5YfmJ42tf/0YIvcb9xL1bN8NPHv/C
S1TIR9599x/91sP+tf/923LA+77njuGaX37ye6fm+uOvHL6c/41//JBNDWL4
jL7//9a33pkJ8IVfHv9m+nt/ID1APDry2CPjryH6mf/oDSeiPF7fx9mjzacu
uOI49aGScivH1eeq466Wl7GY9Pflis8rERNKwFhZMgJl9xJBSNVEZik/nZ5R
7AmmXj5U6VeO6a1nwZWio/ZfBcPg7K3y6jDI2UQ5u5o7gO6aNkxCGpv8ifPh
lsnq2e9K3ubR6hGupgwVA6+LZJzxlFVXGnObMYxKkgJxpier1mJ7XR+vbnk8
rgD+WVSna6aqkt9DcGpG67sIihquKa4W45+CtOrxoj0vAfhXuPfsEsv99on6
deqYiqOePxGpPEs/kQjXmL2G5VQI+nq0E9zIxjOGtyA1V/Z6Wg8vrxGXIca5
3F992GKQdP11q/N2CsNrlGkk/lVmP3XN2bSivpC0PTljYd50ecVCrCbtLZWD
k/iUcJ2Wwe0JC1fEutTjXdKHXIKJIVO+LUZIWJ2dQv7UeXyUOHx2/aBEla5m
j3ZWSnVyBMH8clRP7rHEo/eifC2Xdeq+RGBbBChF/NLSX1t+pcSPyl+W3Qm6
bl2srmphbdLlaSKmnuygrnBco05d8+L6euH5FfqEs6j81Zi14NhR9CcF05Zo
a21J21u96FE4llyS+kDm7XEc795x3jftv/n5B30j/aufe4fNsv3A+17nG9E/
Sf9f4BMfu5/qwuFK/mL8YfO83y6Pxi/F/e0HfgQDHr4E+9hdGKTczO+Prg32
E1BL8/QzTxa3aJN5QMncjzYMpg7n3/GA/C+G8SkGljxb/y09VzmG25cWO9n/
t/D5/6fwpyHDjHH/3wI6Rpnj2w8McTbSleY79rp7gPP88R/IIwI48mrY7P3a
179xPC89/LjlTlAPe8UPPfzol3778B3+EfPjQZvtW5jdb4d94KfHfeDDFPuT
+3v3Mw6/qeaw80xx1A3t0dS9+7b/n7oIjrv83PL+/9Jd7set6eeee+7eww75
dqBfHAQ4ezgYnG2cbrMbfj/S42MIDhcM+/APPfxIvPEQDguohGM7OIv9/94X
F9tjxLcSRN7/hzHbLzzzzOFPMzz18dHsfusis/TRbMbByPe+7/1jGh5vMcsf
DWaTGuycP6DZIWfHKx/nuLuzrlEiU+ba8eTZ8U+oQz/77Xt/4N5/+83D39X9
0z947Gf+5uvPd+MgSwnEYfz17uL5f3ZIqN/93IMG8o4u2N1x9/inPX7tU2/T
8G15Rtr/f22+5u8/Of6nnofeeVcU+aNrb37z+IfCP/7RNyJ8dCWUXDJ9W/iV
6HGL42xwnnMkgTBEdpvCNHn+inPlWEAQNtmM7FSB83cUn1jK/yJhgkGWbBtP
HSZyUx0oAEJDQWeSLzwp9MF6CYZxKH895GXpnnJEpBcy3Qu6XaAdRrCCEhbs
PWnO6B3VYtzljtPFjLbonkEtKG0F1cgQwYGEnUemiPfkbJ8u69lUR2xAm72D
/TyXeEe3GyAl7DJmwNmbnCUuo/AZgNTmkdlgO2coZ3HkZ3RQz2jykiCENGSv
mWxjiUyclC4XtPdZqBOmNAcOHBGKfk7SKCBcNMcLlowtKD0Sb9lv+a5pk8Kk
Od8zwo4D02a7zHD1E1R0klS5vBTR3tJJXL/kWTg9OYM2IYI8QmI40N6uEMTE
yaKOhJQZw7qM95ogQMA1B3vTxlwsgp09ex0MS/OqwUsdZ+mgYV5Ec8nhsxdL
n5pzjdPNdb60oSRVAL8P4dsSXFxllAPhtap0CuVAqphlCa4gocHCMZrLdGPh
qUiQa/UOoRQXxpOjjnF0JHO34su0HhK8CR8ftodhmizhGlmOKZ6ctttI+LB8
CKEJYarREz2PGcosEpdh89KjECoCM1xqvXdcWyqsvtTKZKYSrB4tgfAwGifI
NmQW6cB2WTLZc9NNYuh6zkq6LEeWuiyQTQolhQ/oUducytYSKImFrHtayCQ1
Yps9GdmQNTsgL7IMR5Zyy1AWq8obaop4x1U7KJtCTfAu0Q8bGy1ASx8hwR71
M0kxG7B0A0iBC9psBnsU/J5qLqXt0j3tafxooY8WBIEbCSaMGSC28b3cEJLv
EbGtQCGIKT6AqOwNggxqOktZpNxnnshoXCY079i73u3ReV0tWYuyPVx8hXVb
ZSbltdfQ3PYI7CkWrkXSumjua6Z4FKTnlFKi9FBLlvKWqyE3FZwFvIPN0+0U
ipKZhd7Kp6Hz5Oa5pwu4jzKGLyGAXPJIQIaQYTXH2jIaHL7xjr19F5Ye3/nn
39vzgR+5RwK32X7kgzd19/u7aZdg5Ma9N2/nHe/D1917F43DxZ/5O2/SzXzr
EskX36Ucb+H9/yf/0tIR6F1StjrLdm98/J6/XcA+7s07focfNnz1c29nB6kD
GQP3iY+9wS/YX8zk0f3/sfTvB2HQ3vm2OwYj2cK9U6P+DHHvtZL2Ow7Ecmyt
Kbn63dPY/0f9GvbMD/vPPqZn/WZUVPyaektPn9r3//3MsGO/v/j4J3SfQRG0
zfbHhy+B92NjvOzxPXDewxm2ygebH3z4Ed923t81bGgL+Y+mDsbY/g9aLH9I
tApdU791TJbOK6PK8Ot6hm+n+zqFSr+VaQJ8RUYGXSpCcJzrk5/61PCLdEJD
SOUMD7kgsLZ5fsSB26rBJJeLwy32mIAfG21/+H0/OjzgEPXoYbkBtX3cHoUg
+sfDLXfF46Xc0kZb2e9T+tJvfxlKeLzlcf/+v0JqCUUDjqONtBz/A5pp2l99
7J5/94eHHPnWF9/9l978mpFdovlb1r3hrwP8n//To6aryKP9jO95ePxm/n/x
s28a4m7RJ+N7fP//LW95bb7mR987yuBff/9NylDzsd/+tR8Y//jI3/gPvov3
UZ1Fjv+o84ZDsbhmPff6eN1xNmkcI6393C6xB8jtYlXT+fzV5ipjEXNqIhZa
FgVnT1vceGs4T9psIbgWVq84TLy1lv7HRjvKxdLbJG7+SZ8hSl7HXbIwo5cG
W8sAk232hQaUwuRK4kPJ3gU9GU+tF1VzpBhsWEpfwU0X2lErnfDIWGGYe6ry
AmejsMSWjxpR2XqlcpNulNWxhdsBXKZ7wX8fn+rRSmrrLhc+8jeKuRcOjdrW
+hl/ngUHgYk/7RLyowSApT4sxVGfa++M1V5wx5D5IIjphg3Wt1QiwQ1GWJi8
ddD8KTZnxJLfbjxx0LyNadK7VVtm3UoI6ROJteCPT+ErAnecOnnYxj5udoh1
XKRsV2HkPuAjZPBAYyhOFjq5JIQtB5FBrrS0qBESxocpUYJ2xOotwoEswKYc
BXdkHSes72/Qzrw4TqmdVjSghFHINgGWcMeoC75JDWIlhODQ+Pw8RVeU8nYJ
7bWKZlmmQWRJp81Ac1BEyVYB5AvvCDln0EgsKfre5yNDe6QtyKlFKkoTcQwL
qI1BzcWOq0/PoJEjG3/LUZYlCZGNNEo47AK4MwliVfcsc1NZ0mXelczr2U1y
BxA0Yb0GoTI6mYfSqcLYw7uluLmjXBDcVvZ80NykqgF60BROfkmWHZMfxkiV
l01p3Q/0dNtJNZGaC21x8F0ZoJwMIyvDZsfgiCMbjpoXOLYwxI4ZtfNajzBZ
Xnt1C4rt3SwIyQnIyWLFAtfTC6gZJQ43EngOvlFe8TKcFyyUv6gUTn5ol6zW
lzzCxqziJmRjbZ71e0s3XsQWQkqJAyXhWJO2uBgyS6FsesaaYbTNrtLbJbvs
edQ7VmZeZBG9VZ1xPaFyz9kddBiiEZILVPHZeYViwLJVlAVaR7ykcrfcwyQT
zy2oiAaeETCd966GlirLDazSDsoxsSqjsOhKhNZiyE2itBRW1lspdqQwDIXf
zg90LOKUgDQmNHYJg00HksjIJieoq1YhYVHNjRiqG1r3ud+jlUvIbm9HYxWA
3lK9W1GnJM6aHmLvyAWnoKUvCjSaxvYk2l6SdhSL8d4ltux8JSIwQjRoXu46
tEnTJwgQBF9V+WJ5a1qH/F2GaPJmDsWXewnBmY4QkdB/+vGZJ7Hf7v8X4Acf
u5Mx5I1rP8ph/5h+sc9+tMMOObHxnpu38/45PSOAs2zP/nWwNqj0AF2+xT9d
eSvlgT4e4fv/Liar4xMK/kVG44CmnGz83h2F9GD/Ox+4I1zj2ccwum330HR7
cKxqiIVHG0JDu/MZb77+jTffcD8FYie+H48v/faXx71uoD3uPz993IOVlKGf
w776Dx+//k3FGh/xLCv7Hv7xlh/lwNH+v8zF+8AeoPe+7/3DIMP/O1iSU7Sh
jSwIxjA3lkIG5MiKTeqhQkOkbr7+/uFb68enDzFlSOHHuD/08CP3vv7+ZYG8
S+52+DU4Dx6etowXDLMMWK3InbB8WCpivP/v6c8ouWKvCK6VWD7CtSfAMq4U
tvxiuOzJpz5Ovh+Autcs30dq6cKIWXbBweMzJtEK/L8PRcwbJ5Y4CiUahv3b
5mL3vxz38/c/77731e4IJJRSfrDqv/7Px2eFf+0H7iX+jNM9/YtvHT599F13
c2qHiH/Qv///ltfma7avvvjTPzj8f4T/7r986zINsj/+nv0HgXe+484lqbRy
VYy/1K+Kny/aOCwsSsux3k2dv/pcORYk9bHX0uybstZfo6y/FDjzEvIqWL3y
MBHZ9NXuVueiNgMde0HIZU/rPp03oMqjmRTs+EabRbZo4oybncRCm0ayh7rc
AAXHgl5oH+IQjcB6d6p7y9BJ3wcIoaxgiUjGDj9MnUaI46fbCa7C09Bj00af
wAhMuLN1wgTMCRAPayCweCHdeLzA+iJey2BxxHet1F9JH4VlCUBkFUy8YmYW
ZntWLtVOUE6ZUHFv57XVoyMTbUgZaujI8s3Ep5tg7W5ZMSRkAVOXDOO8pi2g
RMK4YbXJg3v6GBSZbMQKTcOcINkwt38XAKGlE7eFW9485InymaWFJuQXOSKq
u5IQeLh3/tMZHhzR4lUTkuctU6CYWj4qUEVwo2xK0MWqMAt2eIIy7Jb5YssU
j0IV1kkfmTPWYRbjI002oqUxo9XgJZUP2YfhCyiLV0kJs80rtZCzRjJls9Uc
ASAoK7Q6WPXBd5a1mPXL6LhsjywdRmr/ohnqslJrl+baiaiKDb6N5ltzcG1F
/gptVC1jH9Vvw3REmHg+k8FjUZIcW5EWygk+K9TyMAK5zxcHSnAmqqchH8F8
vT1HoZCF1fR53FI0tDXb2dNyaicPZxCT07zWxnWiA5RWc1ztRnqXaShgWkUI
BAhTpyxgEHKpLUxNORuZw5aEtjO7o2YQXFTUVnr7MhlGxKsvC0pVcCOgSlQk
BqqyhdHiDp4uo/ISxvt8USfPlN1K9J932tXgJMIrnj1HMPEf9Ijb8gUNeIRc
y/iuo2268FFJjOkwIUH5tY+WryH3dZ9/gnKZBinR0LcHKuas5NyRHOSHX8mq
wk7ZNg8cpqWN7s9n+5fqdWF2IhU/cah8EY5JinXHg98Ol3X283Bmk/J3A2No
hBUNEr60T7vTGM3/TK0f3/7Nd9kgGxp/E363z7C7/pkn37Q/9oPwvvq48W6G
OQi8mf/HX3l4f015/OBjd666cd6w/0/4bByTlUC3yb//h4ENz0Te+cAdw6cf
+cDNAoHx2PgI/NcNhgccwyH7/x3g9f9xMPyHgmzhcf9/o5QeI7sH4dnjv2En
1i7YsG0PPvzwsJvN6bC/Zn/+z/7sz/bnj9v7h/B5IIafjz/xBL4o7uSxF+NX
7tX94fvewzfGebqnP/tZfwDBTPbfAxOoO/zBgiefeopJvvTv/xPtV2wMjRzy
FMbYNYNJj/MzETqGhyNf+/o3BLRuyxcPP4dd7n0Ibh4eAVBuOlzd9oePTzQG
JB3D/TU/dfxDCYffNbS/t0sGdyOk+8HvHQanuAzf/xfu7eOuKmGXSRbsyTPY
M4ReP7LE78ZnRvK0hQYfLIdhXUix7b2vf8Pwa4K+8Mwzy5G9G2fmVNyXNvuK
bR4HH/jpS4nNf/rE64cEefhddy/tghBuiUW/feRd458A/vY/ebi7/YI9+r4H
7zLZeWS98+I7aMhmSNiBbx/89+T7//ma3/j7458AePf33aUB2u5vGX4H0T/9
Rw/qFONlVhQ2Yvxlfi37LSv2qttccZyi+gySflShqSSSeHWXnL/c5i6yK+aC
6LnEQitjrIA81EuH8y1g9QrCZMzcjtmyyfZoq7NxR4xU0RJMlHUPjm98djI4
YVtZMoVbbrrYnbLNE6/FO3OwC7fXZAjlYwlUHaiN3N55UDZswIpxkECTSSqk
PKD4Zd3XsU5tEjKxb+R4rcI1ep6rhg5bEVLQCIHbrBQ3DkfmgPIwkmrVbeKk
PFQnvF3R1BJTIucE8TbEYTay6kjZ2m6zLC0nF5aUEcI3UQx1U09yJzOSpIsm
CZgpQ70c5yCSL5J6ObMKkcGwm9UVzMhIAvmOUeLEKYYVznRkf8wyQjU1PNGS
MRwbyi/go7q38cRcqfQxYcjsXHQ2SrY6xVYkEaFXXFWStSIfV4nzKyp/Y2tX
1axUj2IcZZYAZldAKlBHbd9wKFedOrV/C0UVwmRuCGLdNrC9VOAVmR3OD+o6
QGQBQuzYWRmZzQgMjB1y0I0N1Y6teM19glmCCohVngLlHA6Yq2JTXdusUvpU
NXEjd4nLW6ITNRIxBcLUdE2YVGmWyxx9upEk6ihn1ZdwSyjT8egyAptQj5yx
EVI/L4NscioxYhQsWiFGmdKWw6ZIVTumQJh0LN+xvE7VfSq7QVhUV0PfSP12
nCXpXu42t2iQoPnJ4G5LeRoH59IpvKWFAE1aVbHK8gB+MGyl4DD5o+ZUaUJZ
qcggnSUNda5RNGrjO3y6YnbxyF1c0cs40ueDdXSklvUknhwaM2ljyhY1LRSm
0FNp1kyEslh6DBXfy3ekBAyb6GfysZpyllqIlZyRBZrKuEah04yDzeSm7gpG
IQpFIU3K3GDLoc/TzVUW6jCmv5bolOvB0LClNmOVlFBIrrlv85qAd8GMTbCW
TI0d/gr26LKauymbxdC2vsvEClHryEHrOuTAUAeivuOBV+cde5WIzU+mZwRf
/PRbl+xpBwvDL7SZOr79m++65+YNSIdpBe+9nzg+8COvM1g29f6/92ysQmZt
/P5/z9ds77n3Bj+q+OKnHxhQ5V8NNE6EAKGQ8eOS8Sv9x6PY/z/+3BszPNRg
cob9fzP+aGS34eAO+7TPP//805/93HEz1ruXw2WPP/GE7aV/HIAYK4ZfSrO/
4LAPLOuOwwbv8OXtYYdconwcR7bc7ee9r3/Dfsz9pKpCm3Gz/UMfphI5mDfs
A3+WObn/uZ99f3I/GpY5R6rQhranWDBmg1YEaRXa5gOGT4/f/38iSL2TYcDt
cIENVZaGpf33ij1cTz71lCby0ccPfXhAcu8UqcpIAL/3gLNk8ebm6+8fPh22
2T3NH//QE/4cxJEcK50BMoxDl21sBToSbHhSs5/38L8A6PzqOO/wvxX2nx5C
AD2hjSl7QLBHaQ8RJj1cc3i+MGz+73+O6Fm2sguH3/tEjCKcnaihLpB4dpvf
+dwhof7llx95z8N3D8djh593+dvhuP9Nd7jN+xf/+JNjFv/Gp9/+Pa+/Y39+
vd39lcde9+1/Mj62+w/ffxOSi8NXSZsPxt//swnXfPf3vOp//93D3xH+0z94
7CN/43ted9/hPwHdcderHv+x+/7110dheeyRu7VCDaWElufcJPcBh61gwm2/
C0vH42SGX34vNX4uVhsIndEJPU95/io2s7yA0nkZFXFWVadlrIlAGOGlw/l6
WL2iMAmyr/OS+4ZG7orJNroxvIBQc5FyhH0Txvjc0Uc+Y7eNIHQbxdClhpdF
QHXlA/ZeQbyOqBxBoDhSm2TD+OnKPl2xYUXItuGjwSSsJhgNPgDXNoaJEFgB
AeUShUwtlO5urCM8Y3CfuTGOplSEIhH+KHzYbVt5W+6BkE34DWLkoYGPW52U
FwVEAAkrEU9aLGUaDyhRkOwuVLdjBxnqZANfjNB478czMgHgoKw9u02ai8pr
ZovMmyjHGdexp+PFK6/yYWSRRwWcs0ASSmLtlq/Cp7CQx3F8GEBWM08uAJI3
ExSWrY6gXO0Iok6D0il6zFWmaB+g07wYVJqup/BxFoQNHxZMBjOJOZm6IhWi
BFQ96T2JoFeSj10AzQQk0iDs8rFoM/04mzhz9QgqJ2wnxztW1IJj4IzOwiEA
8ztm2hSXQpkj6ZDQSHRW8RaJeLUeUbrSFCt2ivU8DbWCUxVnnBsgc0hMj2mK
lLQZA7t4lw+W0OMVIoa4GU7GQrAqBcf3A+2jlYPTGyv4I79L5NSdTUUQWcwh
yFixCIgEgWY8bLcV/gN8soqTBVmv6EXBjxGh9oBTmLKeXyMpWK9igWBrdedz
Q5arbjBQsehsBJOYUEHtMVdkFKWqBIiHFaxUfjtzPOU40qdTHMRIUIv6DUio
NCcG4CrcyHvIHYgtgi8NA2cKAMf+ZKdSxlWM09mHZXZRFeCQafWZEnkSnCBi
IWuiAmAKfe4cOkajdxxEPF2JRzzpVs8HPJ0wW+qNeZ24ibdw1+HXe2pwk1BB
serIVKYKCc5KQkzzosxpXWPvMmM7jQJUC7onUsCUFs2xlWYoB2WPIUkHB4mf
SHMWB9qM2kZWTKmTNGYE0Vgv0oy93g6GUIqNxmwDUNyHr7qteE0iSTpG5knt
CBpCWRmvFyFd+O3HqcPX8g+7zSwa3eaee2+E7fdPfOwNSb5w/OQHboYxw/HV
z739nps3FlzXus3iONp19v/HUMb9fwg4x/0wlzue9v9J6I4/w1OM/fWLbsNO
/eB77lSc94Mfge3i45LhMcf+Av39Pxv2nWm/SBbunVoAXlaPAbftk089Neww
D3859+nPfvZ4fG7Ygx032I9TLJKwD7u4w0bxcOMXnnnGbzxuaDN5UB+x5S4Z
dDSJrD26s8Vmuyjq5vEP2f6/nh+tlbw+vLUNbZXxbjMYs/954jh8EZ2MHE36
0BOEKtm/t83/+4MSNVbA4+tPfupTOQQJSZllCMHCHo4Mc+1vGe7dDzIMuLfc
/nfAxkB7gnCgjoXl6zgF/ptApSG/8NTHhyl03q8Pxuwtf/DdD4tQS8E6zDJg
OFzsI7jLe2odn+CkImIu7Oc9Ea8nn/r4IiA2Jtoh1862u//nG49dRSs+8/G3
OH/2/L/zdbf/r/QnSP71198z/AWB4Xj6776F+oekwMeDvv//GmWFl4DNW9/6
2v/7a5ALfv1vfv+xv/6j9/mYKbU3OacWdn7BDOy37FcC6oXdW8we1X7h9p86
f7V5eYQT+CecF6HGqRDxi5cQ52tj9UrChOQlKADOLPIsXTXUWOipEZV7MbIp
v3drAY0BUi/0R+jCjI58HeituOzX8KTHcumzLOCUoecA9ltFcruU8UsYN3JB
LzIbcmrhlodOry9HGx0Bzt02mcG8EmsXiNSWQHYkiWzBvNBId5mlXGGHZsyq
vEcflmxrxGTBReGTTp7XbjET2eAFxkxhIoYvaGGlH2VryXd4jdq9GH3PoVR8
Yh4hiEeVIMyjd9swY27PlKUJsRhfitGYIEf54gVRv+UbF0zUnvjQbaNHMQvI
Zr4rCtF2IR5tF3KlJmxvbT+GpdALr5ghyh+SSkhTxDnn19bJRndpmhxPLnq2
YSt5Hc/ojHl1H42poh+yvki0QAnyVFVXzKjkF/Htk/HB1FT1FobMIGUelIWt
7Eh5WIGJSPIiQkRVppLKXu1nC8epTWMVHCLnVjST4yWxSEEP17Bt0KJJ4mGB
7yUVBMuUkM0E1X+RQRoq6bOU6a2l5GYZtK6PDFnwLEqGhRCb4xIUYzua3dOM
nacVE0kDRECNksVO0WvRiqyovQC7EGeB2ELbLXJcOWYzqkDpmM75kD70FnHs
06esz5FjpaZ5vmxhuYyzIdzUYNCmrnTKKJ2x3wSdj3kU79LZoXIWbqkX3NsE
JdQzRSaaAoiFlTBKd7SVQGfLzeAFCCn4a+IwsAPxtn4eRccZFYVaR7YALbpL
tGXKnolCw3FhLcLPRT0UJWbnEq1NeD9uBUxCypkbKZRLW5WPfXhdaaYwbcsG
10tjnR3dbzcsNxA4klCmpZeAbXKKLuiDy1rggtD1cheblO51iWNtrIjRE56k
WvXitAsGs7QqSyMOqZhy1vfpU7ati6ZKa9epPXhBUwc6SSnZLERh5HbtVcYz
WBeomwExqmVKYwsHH3ySnSKaHb6vLr9a5z2v5QI6XPPFT79Vr7kzxl3ovbnn
3ts/8+Sb+E/9/n/H36Xz1c+9/bB17474YVb9/E9899Tv/AlG+gh8y9/+ie8W
uHpMxHbub/db9u6XLuxN9Wv2vvAth2/1Tzg+vM6mBpx5NcGxWFQWHn6JkNMj
+TIcxy/eY+t1+Pf8889/6be/bFvc0Vr/+VM/+9Hyxh9+3/sXaX/PDf78M8/8
i299K3Tdi4C24f/kU0/tLz4MqOmwP7M//wtPPbXsC78W6YVv44cpvnA05vTx
eboxmyTwmr+Dj4fv7acQB0/3Lx5898P7EAz/ayAguf9okfziM/sL9pcNu/H+
bx+UvZHEkJHYA2h727xLLCkxwDV4nVg66tWeNnvogs37eX/hOG85po0DY7Ll
X/v614+s2+YIDjYPLpw+nlQbeNL96ze/+TVX2fzH/j8d/e27X/zYm3hPfn/8
0W+9+8d++N4c6CXNO5yR3/+TzFsYhR58x52/9fQ7eYr/458+8sXPvP17v/cO
TxY1TIX6JGFORKfMnVu4dzF9F7flXObC+avPu1CET+MfcF6k27MovdQ4Xx2r
VyQmYWkWsYotTdArcz8vIk4Nu0hwnUSY1gJJbaZuLyU9XzBlhliY+ny5Pi4G
T9k2cWY7Ebh0DTMhDFWQMK6GFhPo1Yc2BkttUWScPo7JVgn45XJ7miQVaJO8
OnFmKjevcqNaEtv18vxVOHD6ltKwCXGYOmTHYBGjGZnD9bf0OjubvJMlW3Ik
LpdOyiMblo4+Grmg8yU4Jdun0iHIqQzYR0uWlgIJNAFhwrBTOFSbJwJ1cWMv
qbokoT6d7LUipU8jMtXaYYLzspR2QqYQhFV/bbyzugxu6enxFqkjmKLcf0vA
5pBdqvCnrUq1I20FVNJdCv7puU5zchKuywQzUKs0ICTpwr3u5fYpbZ+qBbQL
WmwITIXpBFyTUPTFLXX0e7XTHIxQ9NE2v6xUDyNGXMAmG6qELa9U2pwmAB3B
5uqavrAk06Caom4yyzDlrA+YBMIsYlHwfcLLcOj1WXx1TfYrgONCNxWOaG3J
+aB1vUyN7iu1YYE20+kQiZojGE26AlvYa1zjJEn4l9EvJahEJg2C/dKp2E2y
LlfeqkZMZOtVT0aedNCQKaeiyCB2If23i1O3xBEmpyturCX6hKdZik/w0HGo
B5x+aBWk4AQlSstDUHDNBMEWbG1yP/DnBCsWXX943R7Pt3ay9Sv78d422NnT
sD0usyv9ehuqtxl7H3+BoY63t2LbeD3mHW8kNw93feBHXrc/3vHWVw8mHa5v
+/2xMJOGW9w1fuFWHa5pad7xtfs+ONsrAqPj44yKgCAj2JoXrYNzNLWl2+1i
+xRIgmPtxscBPi2B1vbm12BhsA1RMNd6jBk4QKHfH49/6In9cfzyNg8C+xfm
8kLhwo3ELhukl9CHoDPHWgsZZud7nWZudk+0B0RkYT8yYbShtzPuvo3fOhNG
kyhhcZ4oNEzXe5Yt9UpJE+cJhWA58kSTq+UQKFGBQAj6eHJ/y3Av2+8XjFSU
vGbpEB/xaeu3FzcOF9/7+teP8xqYmuyWJu2GY8EiMFg+PE+Bs+0IEYuVwR6V
xHSm9zHH692k0YaeE21MsdZv2SwMTCchpy3L2utu3v6XH737oXfeeeM1F5VU
uo9QYJbW8jyL5/7nnffcvh//B77/dfd91+0cUMJkNJiFlGVk0V7VL8/WF3iv
izN4TkeFeT9x/hqxoOmuhH/AWWn/ncP5+li9wjBZqBd0I2zmOpgUiZWHqrm7
BgWGenO+ky/AbemyRrAvOvFl4VC3jIwXEQGKPmI5MqFWDCmUInEMOCEP1UXP
Y03FEqP5pwKCUKuNJ4VywKoPdykTkqc8VItcjm1S4jlbhfGpN1sIJhupGpxx
Gr6FhV56S/GiOBYqfV5S+UZlJnunSWG0XHTUp0mr4yb1I2ipoVriSmHUkgAH
l9poQPZ0kV4bRP0iuWAa1cfZJ2YhAnC69cwfVwzNR+lyySnOU7JKlASMEg5w
AnJz2zKpenJEOk9mI3QSWEXaMNWZxsvYIvKLwmUyrOc2eJHsTH5B7kL/qS9i
8uKCtg/ZqkxgRTLKqXkwjIPb9mGN40PJ4Fz7jMwLvj4sCgA7u9xbXVA3234h
7jDCSSpL4WVh5BUZks4zBSsLKdyhLBJdR1pq4WaSLCQuWH2Pjmv/EHxxS1Q0
+gXksU9X9kItxk0X0Upsv9fi7qEUiqJ7YSYESDU3lRsITRTDoPAqBR5ZJ39P
i3dZJtiK7FSJjwnYcckgG1qwkfEEYmkjYqEO2lsGKlRGQB2WacTkcQ1Oq+lE
1+SRx1RPSo8RzODLuFuzRbesL+ItJOkQT58r9aXBbC+4Zcl2m0OWQdYIh6Wl
edArTS6Xps2iVabpqpzFTe2JPT9yk1KMpFiKaUXOkLB91CtCjBsPzmIBQd4K
8Vy1IFwokaoYnbCOFuMUo5w7EVJ6KyIAklPGCXpBoqUbiVU76ZiEb+Qwum5i
GmOeJAI0WLT9kgQQ+WU6gKC0cjulCbUHunhZuqTImkhS2870XDpDz7YYl0Wa
quNqS3RbYq0rtciisBh0SpsxFXni2lbWjMhZJEjOCyDg54mxi2K0wHnEsUg0
VeO0SzZKrq/BOZHzOoh0T7NDg6ttOe1kklZ4p2dNSO+rXWsYGPleV/HUUbQb
J8OCkteYM9zoywcS6jFN3OzeUoMaD1+gtagOyPeWVoJSRnufaNEiT7nxGK+h
lSC8aN131pYesTNnl2QJctBUzi3kdbf/9NbU9WT0LiwSkbAsApYsvG8AX7xw
u7+WszSgP9FYtBroTgxb+BkegVp3gOzcwBmD2kho7tuZ1hniWWZTd70Pa2b0
7iBXQE4NeusGu9c9zw5CgpPOIjIeKMleEIxUbgMBr61EGJmU9Nku8LAiiAse
k9oGC7SzXWHHrlQP1hGMphiRKpbpXAp7Rw8a1W44TCYRkkokULGFgAKQJT6v
+eV88IR1lHCj1ylDMuoPL51cdhZIGV7pIK2osKrmSExJeEUrqIq5sLvx+tps
7jEv6dXE+bGUYIfQ/eJunJscWwxaOHj50F/TL2pObvneljgJPYQIB8xfuli8
AnC+JlavPEy0QKNwd26S6LBKHDbPUXAdKGpl09YTmoGlwIgChI4IWHkQqXno
XC5otY6yuyFtNKDwgoZlfabWRfZMUHeMBp1VAdhPo0lv5oXD08oaNjNj7DRa
54P3MCCMbj6gLntpg+Wtj29cRWthU4DVCjXKELpZlXGin5cPqbyAekn4OHW9
yeQY8UpnSTeONPZ4dbbSYdfYVG5uMTsaDOpmsfJd+C3cg3USSspW71XGrsCu
R+O0bIGPc9WYg2InnZK3SaQVvn20JGyRKS4a6MldWJCndMvGPWWeuOws6QWp
AdJwSZgsffyOou8zolG3cfzbQaKitj5yAXHds54hiK0DTkpIgFOecoJ7gnBe
i4V+AVIJerWUWyibSABJ9mXtxhItnZVIh39q4ePFlBLSMoi7KWnP0mLTlNBd
8DQRw1DLSM+RicJGPww9b5IhDragk4UM50gXFc+Fl1dJkps+VCvoLQlzVwaR
tTEQLqq90S/EGhD5BbxiYlMJai6j3EswYeQZGRUIjw6pCm9leDVhX0yTschC
zWWX+6WEFfH1zFq2An7KNfRCXG09d3gVRmzn4uIl1cnjrYLLKVV/3A4+SBvQ
EXO8JEGlqaLBF88ILmG2p8fjuNna7Xi+L1vhM6uuFzVsHXBakfBauLkieEsg
bQZMpS7O3Nl4pCgjLIMgniADqbpo+xLE49aFCqjquVRYVGejHJ9kOaW0XXJG
i9RTkQpV2JWcFBiSwiWD2gZQ0XHoGIQezYkUrOACbUSg5PGkyAWw3aPcYUx6
vul6Qv1SUFfadtCK4FNskPIkO4tOuI1mGK0OZa60AZbybSCDspcyBQWCshUD
Stbb1KbGlEE9+eU1yBpR7jc8ASkW3v5JgcNOoBdlfuFFs3e2sD3S8aoLLr8l
Y3XbR6qblgnnA5hJnOl5QKE9G9bxT1wDqSeZdWp5uUGlawkNES7Qw2poCFNP
LpNSkV+6khWZYvWmcoAZtY3fWCsCCYUicY2GC57FKDHEN+kraDmABgmFnqqP
JDKYQ4XSF6eOpGidyiOb6tfIoQmSrkQbA7Vktvdx8A43LuOkxWVyXgLk42xg
SRe9WJbj+PhdwGezzN51Ygy2H3nMjkfow6cBItTHMEi0qicK9ZS5GpoOr5f5
I04oPtAGkGKIRxWAkJQc2cwfT3Bv5zxfNhOzUILIOCT4EWcXN6I3WasrRycM
mS24+cihJEWqUCdWUVTyblMEWt5CM4UGLUeQ2ulAcpiBRKYlrfNHLlBL9Hw3
dRlRy9Itpn9XedpVZudPM+Xii0zUyBaq/nRSJgojdAuBSAxbBjvDizZd0AVU
42vR5Mjz/pLzrT95wURSfYQPZeCQktfw69buRddEGddFMcxkkOx7sWNxJfy/
8zi/MKxeWZiMrZpdvGxLBzeGCb31zK2aDZvXVetES8OmsoPeaBksvHxD4RtP
km3T4ws49FCAIg7F1rDSfkWpn6Z+HQ9oCNvJZXmLNDyRD+NoHUeNzEB0NjlJ
bVLveCMtaUWpETTksVvOK2hhstjptNTGbIOT0sBsJiiUo+bXKw/r4jJd2gIH
WolXMWM9Jq+mJ49xlc1wORmKoG9kOmkSppRHFw7BpI7oFHWAlmC8IJWLFeGc
v4LYJnK7k5/LcBLdBXu3qXJqQm8NnyWPb6+Fezw7L9NCfpWvpwggecd2bgT/
Ljkl159iETYAaU9Ag56wgibIgycBEy9SQ1iokHIyBkWZ3LHgJ84TRZNJAcNw
l65BgnoUfMhE9bmqcVgTtCZKpMroe6SCa1hLCuahyC5LX1gxuo1cmRNhiLW3
N12ByQJLJyKSDihsiesvjj4tCoZDegYf2Taa1GslG1dYbJUvKHmL5XM0bLOI
uk37mYFIuftqeYNIouZX4qEAp1Uq9MafxGpd7y8LX2QRHRU7U450PlXzMBdt
T/HUKbhpBAoQUyXW4jIcTJiNUYLaNrRJZU6BgUUd92o42dBWdV82diLgQdYC
8/OWYIE5CU663ceU53rZ5aXesojua1mRKKDMKUUxrMJlD2fVBXTaaDxgBqPk
hrECLIrHcJUUC5HCp6otkhQCRW5FJtYsFdQdDSi0LODVFUdub6ypjloapuY6
7pvYym10JpE85OBG7NfpCHx4hA3zeD0/nWEBJJDt3rhXQxFcVvZIyAImvsji
oSS4qQZ1m2WItaPHkkiT+jOppRSySjEKwvTLuEajkSNRN+o7tQpelznQDlom
mx7z6uTp4xZueSnHqbG9xePFQ2l6kCmDX1RHXgIQki+bdOYaI/CNNbzdxOAv
Y1he+DGJxvXHSScvJRiK3fVsiMjc0iDXMfWyVLouMi861Jfdck2dmRefbq4/
9eaFRORW7v2OpMwtxOI0/n8+OL9kWL3MMXnh+VhZeAWcXyzATy8HXpbHaaxy
cb+y1zrIqWvGRvclqexXjuz85NsXju21Brxqnr6osExl/a1Pfb20mqbZNdNz
Xo6ZBnlZdJK3asZ8+sUVBefyefMy+RbG1BX6ny/mefYT9ry0pnaXzPICWXHN
y64Y4he0XL0uP6/u1C0tcG4F5Hj9i9I2nMyysoK8WIupiXHq3Wx6fW1sr0vy
W8X5pGGnB+kuu/3qLlzJ2he+Lr4ini9u8ykPFq9jfNhOf3EcfDEy4kUH/Aoh
uPV+5qoXvFBlm7L85QJpdZxE9Tu/uLhkxu6q41z/uLI+N93hddMPP8f9Rn/b
HF8f3nbs0fFnN2+60cHmMsd9hHE0v6CDDeOV+zMdz8ijsT10Y2eHmdd0fDtZ
6Fd2boD/ZNeiU80ATjfakEyK+7R7Lxo3vjvaY6C1+AjTuXlueaMXpKjNG3UQ
n3YRusbx7HS0bh7v9dejJfCLIjgfoBB8umyn2t8FAgjCxwHnfnujw47wGoaN
U9TsYeObfp7YGI/GAjdER9DowmWM1Xgkdo1o5HkbpqjPS69bsqFJlJNwSNbI
mYYuM07KlU7gxoZq3PFuervMryxMMgXw8LGzkVFztVA0xH0HREiWRaAZjTYP
9jRh3s447GNy1jNcEfw52WlHZ5nbBb4RMzsJpczS6esu20AK3LnxiGN1XojU
9BJrs5z1jTjpcF3u1wu51+kdKUoZpDWoS5i/FLG4Hv7fGZxfDKxecZhoansC
2gWoCFI0uZyFWilzjULNuldVqNHgwnLB3NysUoNFcnQByTuPJin4eq+Vb8NZ
Pyqa/KZLqkuY+KdRCWMQ6YXAXoVpZNo8xsvv7YjSHYIey0dVMVseChGZo6iJ
d/MY+jq+VYeW+RnqHeVdA2rBkSaMEyIoNPYkJS5hkJywc2pRIlxUxEkZrJYJ
jXPgvFXrQ+5o/RXh5ctG84yi4gLaAC/uPbuMxGlisObyGvlI3O6kwbCOWpKL
PAUbG0io9eEnqKLAugDqCgXcTjmiq4NuTEDjzFzysfP+Fi/GWyBEc7atZft7
NmPOutpMNpOO2Jzc1CmCF138iCJodJKgBD7HHG9i1ARqvjG89eg3vvDswr0R
gTAIml5LBwNNtD0WR1wQhagJihFgR3Ug5DumXygQ8zaB08QLMtT509FZyRei
DWcWj58iFUJQFCNXACe5LHVDUDRT8piydotXZkgXFVYLnlqu8dmpf2DmNIiy
uu+LULuRMjpVz4LGUWkbMTgr7dy7gqo+WjXhAWM3AhFr+ggamRGnEN1I+FNp
mAOBoieRlrLRYOVy2YS3xoTU8Ey8Nkls0jVhZCF2R0RVyznTQ2SHzoflrhFB
0Cl4wEDR0F9xwfUeXnd4OH+TF1PZQUHn1OtM5WjfiRu2SM4pDMHGkI/zVF+k
IGr1pNYlr8Sp6DNvc/p74Jqx905JEYFK3bVVBL1Ym2QI/hxecONEzYam1aQI
MG5xyVB2HeUFslgzycpLHsIEBvBlHR3etHBOMYeplpE4uIVzNixyqcM6IuEg
I4hexesTz6Pqaknt5qGhaqRIFcYnG4ROTYhIqbS5KZqIyGih4tBQOFJbDtlB
P2Ak5F3T2NJ4G6m2aVMx6Pzc2qQBeWfX3DbqbSU4vB0TUEczwSE6zWEtydFw
cWAd151UWeZghdvTwzCT0+GtUWgE1tGbN64e3cJcllW/94oyGuc793XU1ftQ
jQpUaycHdzC+L1JAV1oKdQ6UXTlC7S0KGN70CxrQ+ePNIboa9wL29IYnd02d
RxN1CprppZA0pPFK2rl4jiBYsLjkwZ2GZuFgAUMjDBqGDtcb/tgiGGfs7AET
lQB0g2A7FXcjFfg2DjV3wywWc/aIFabxqS2OreWU2eMEXrinDVUTu3KuQ3El
XVBo7NPO3w5OzVviM8zQBqMhy+1iIzPijlLon5ryGJj0dMyTxeOiLHX6oXbT
7UYkRcOUxJNlYcFCF9F0NDU9ifMWCzgY29lU3+ki6hrfuCC6QEXW0RYcdMAa
GxHPOTHfh5o679xwqTFYelNgbw4tg7iHuYZfL+ReixqpH7HLCoQLSOMcYP6/
2LG4Dv7fQZxfOFavGExsXl53I98XrlQkQdzAuNi6GpiAoytwRSJBJoTRwHAx
BW6j+6ZU1L2QmEir5t0LnCU7vf3o6S31S2HzAZ0VBc4DxMWdeycuGY31V/QW
JGkhjxA90Aw116Tb6o7Xl4Z6HoljxxdQXeCwWtFpZXavm3MKq3cOttKUZmzO
98JapQpzjBxH89lylDthCBKkczz5/Fyh5i7F3bcCSg2MG+Y1S9N/LtGRXl0y
y2ivGyCMqnQRC+RFR7W1x6ctbXG4F2hBwWR+4Vkw9p+iCWgjA+uo/+nBT+9e
yDD0IWAyetG5V3muFy3CLaWkpZjyYgThcON9HTQ65alq4Za1DOVjFznGEud6
5Z25bR8tOCh0u4feljm9GNOAk3OIRm+SbvdS60j54m2wcaZV23ihR1Jsuca9
mVcZSlgkHeoXKZUXII0vz+WFowXruIujuzoOn6ZGh5URiY/KoxuQw0el1n2B
DlOumYDPxYWkxgQgZZkIFwk1aOBb0K6TVumMw8Cf2wPKbuqsSItcHq3io/3w
vO6dDwYsyZR/JDUixysFCPlu9RESRNKNzKIQcGikZ0bppBZI8hchtrpsNEZL
QNrLImPhI+Y4xyCYrpZUhsxCV0vIOFUEWqhSG4PIekxJHhmcudOeOihuhEg6
wASUcslis9xbLElMo5blO53h/tMvJrVEZaGCDsXuKF4S8YgwNM1Tm8uH8Rw1
DpzhlLSaBbkOnAQIDQUX04VKhMQkN6HVkibG+QXZie4oVFJPQyleVq0appM3
MOZIQ0aSU7xjM6fIOhPm9HbhZjifwa7EdtdV70BMYZy3JviGMC3MOQ1BKu5n
SNYWbh5KBssaudl0IIaXKro30A/BZX2GHlrbTwFdJN9D0GlMb/kggwuJGrIV
+zlNjJ2RVig699TmzgH84WUgbKZeLqWwJp21EMxSr6Rc8nr3kbosqn1KSGqB
KEDA08nmKewNMK0gDB+PJvqBFiEztaR+qYFJC5qIQtAz31gPHSUVGUr80Lyh
0xOtczlyT31tgjTHAo3bFazCuE5584PWBciEpObOvLPeEiWJ1j7EMeK5iCpE
EqpILasXPskUqBkLJqLZySBgRTKPkKejpxe9emdaJ6B5fekEc+08XeGponUk
DjDA6eeXLaJVXpKMtAEH4uqcLtAzPflihiE0UEu7zCsvFX0kPhnZ9iHisVVA
taW1G2m789+l3mnv7Z/LjtkGk9CNUKldNCAtC6YLHfPQG35oGuOJtkTq4CKM
zy0oru+Ts57UnXrNLsBO63hv1V8XCmq/4YW1fDy1d+9cWQwcMIrzCBoYZgGS
YIIkqbjMcHXpBbomJDVTBRXQexvqVSw9XTR8DYiKxma04qBqIKsW65IP3iMc
4IP323J+LvMKZzynKGVUGMG3njGhOOJGVksYABpbD0Bjyr2qzCKMUDmaVPtk
W5HFu+YBmRYjqB56iNFXWBfHUu9kICO5lTV5cVWk6u/g9xICcD5m3AK3SFwo
VR1SMukymxdyC5qiRdNRcpEyaF6/ojBBUweGS43zXpRWfA16UaogvWom6siC
YCQRdo1FW0is41VSrAVcnReOhjjlzaT3ZmC7hZW6kZBclPv8KabmAkQxDWKF
9gmlGR0pxL+xhA0jQwOlD1y4gy5QjXrqKLU0vkhTcBZNDnXLvfRv1MATDhbo
2HkaH2J9gbMc63kDUonStgKORAdtD+3e0MhMe2NRzyA42k57LyK0iOgpEIiX
JDuljAeLikLPI2N8Ii1lHxdZymvSZOO2tMq+gmOSmHlj40ch6DULuEag37OO
RdpymlFqGfvOlUIwl6JDwW20NqWi5vSgYt3HCxxV7jCTXITZBSvCPFw/F2dV
lMRmxIXzFzWCVruxRsc+RHpO9841xPco5r7Qdj6ThiwoBBwpWm/2QkXuWDjW
2uBRCvQydZPnFQEEJYjP3tm6jqGwUgTtSmgO049ThoWOveB+hi8IErEAu6DJ
3BJw6lGwVOuY7bRe89ek7VLO+ErNvj5MxG2bgs/tRyZV50EPJcwqSymbvlzF
PobvV8QaFNOfmn9uXVwP47pDFtoCKa12be+04zUUNQ9FOERPnIQt08BUtO1k
sYzs47fYCpPGpiEwRzv7QAniXtwVsaToQQNHXpkTFjWs/0BY4c35kpoBPy/t
KxcpR1uYrNs7EjhEIek2JZFYaC5TpoeGBLMj60NJkiVPz3XcHLFS1TrVUb5D
dtBHloxMgxZd8YJWAQIXU9SKju8oznVSFsy4XuMLIt96dpw0tidCgsOpCFLJ
owwl8Rd2hThi5WIpLFVAOBMaS/2UO3mReio3jdgQU9upJbKAcsnqtDADoI3e
waouIdaSiT6XlzZ5kW2TajJVc3mJBFZ4Uwo0JIis7a2JDzKaa6jlCDVpC2OC
p4CkiTnFemtE6mkEzxGq1yH9WwOQ4i4ygkU3ygqvfai4eGElSWQqaridkLI0
5sWaZoEjKeoKl33pIfyEF3EXyIFyp2omh+BOH7pTFAhTjTlPw6YSHKeIBJ4Y
9vRRTq2U4AQRhYlHJYmnEZuydpE0Njt+OiKX+JXu0iJVzLiohk1TxysrG/rT
cUk39vmjCdeK9puLTnnjhDETIsk3TjCBBWcqELHwhdCEqtdO2TDpbzIpckZX
l1M20L3FsLp8mwwlhy9TN8ivgC9aNB24IFZ5fGFpnVN1Utj1CT0xICnzFY4J
p6yaTyfRRF5PrZ6meeKIKW6TIJckbMuLT8Ml7f1ULZi6dwLnKSrWliQ8+/lJ
Gy4V8KSHsuQ5IcXXt/nqYnhr478sMJmi2Qk3VeHrfZiYICo4V8DktKen6loS
5zqOVwhfsLZYR5884tI+fMpQBwxDdocyMUGJukk77ftJCeoXodM+6exUCBbK
imxAYm8O96nWwnU1CJ137EFX4zi56MRdwekgyr0xiy8Ff/J82B2t76JqO3lN
eeZkO3R5oP3Koje+tB7F0J8siGxzMjWz/Sos5aO0vzKgDXedasYyngXBqojn
e0+Cj7sipAmWwqThxYQml9XnBD2i2mc7MzJV3KduqXh1qg8ss2ZaY8Nlsucz
5Vc5YBER3hO4bC1WBGgiynMN31RoJqa7fC2fx8TbtrhlQQ5OpfOU+DtQOmM/
n17763lz58ReQZV9hT0TOJ8GmW1mWb7U8quwUS/Qvf0rGHkdMZ8atnZHzlSU
OB2IEzBexeZLp4tDTSE2udg/4WzmUtpXPO1gtY4rfV9Mh3KR2qHTN/r3tUJY
L9Htie3EskE6XQezYSV6oUNLpSfsGCMoVdUIenv5FooX95PaGDafY+hlwGAq
P1pNdLocsZMCdXqXqf5OBYVvaopFQfhM2vAEIVwp2+YnXLhUAabS5BQsl41W
YHUZaScL7mRFJgz1sR2uPz++Pm+PL44/z0vX2upMebIbBpnz4DUU9XnMjkEO
hi3O0+3jRy3N0upQ4aTOeE6m6siL8+BLOy+sMpNgQIvRzosZF3p78rqltza7
Tj3NujZRKzlLUYtgnutQAmYrKJ1zjNr69ung1sd5eW+LEMjF6WS8XT5dhEHO
28RPplNQquCFA9JWWcyzJ/dzxIu8YAq1Ez5OzjUYvCivj4AgI6LxV4ldEe7O
GNimpBs8pZPn7ekpFuVccleLt2MWa+hZGQTzmNGnEirIF8+CMxmTVj9V8TkV
l3RxQa02DZumJgQo1kxvGyRoUSlN58dBZAqzrVDO01SpQA7XZBinQBNiBNDa
VJ40mwqNmp7OdTuEOyvhpYBM2zzn6hBtS8hff/yXEyZBCmzAcxowVs8wFDly
ng1uJ95OykKFucFVJHjAobX2KdsD0VgEp3LSXUaexbnEaxFMKgJUNy1FFwQh
zfVuqppTvyGutZf7AuluL7eqrqSZxrn0i+4ltCsO5H7g3JuuNiTdYrKKtTGm
50HG20TaSqI9ypFOHchp1p5ajIj7bSXaOWvaakytQTEcrXmaW4sKnPKjdHJR
XKDFaOjEysqlVy4kB0+g1E4Y2daGlc0eI3A+xU+9PV5TZdypueLIqa+LarBg
0M7JBm4wtNlesDEB4as0A1NxL+89159RV1vYJhheAstJd5J3TR459ELxrpS8
nheEc7DhvEy3zoRCu7UqlCIIJ/Io8D8VboHXhz3P508eV2VCGxyZ3oeJk1Yb
I4whraEYogi+1WXxK1qVC9Ol3deCp5uu0YswuGffYf/hVFIsYNhUDapmHMQ5
5X7WeZaOuBsj4TihaRMnb40zueKnOE4mSMmlslLUt5d8aC/xvbGqVPMqtzp8
Pvc201Cz4ye6mjBFviwqzOlJS0cqYB0uimBV07vUFE0zIVZMbjPGjTvdQKga
yys2IQJ+W4SjydMdfUw4YDv3PGzRxBpaL6uD7FCsF7YnEHe6TrC0MKxwfDFJ
4Mugq/vDKdgnSUtCN3l9XAfxW2rRF1m3J7qyRThZ51fW9nZRnA89m3ZN11LI
srgXbNTrmfzn4Yw2eOftzK0d3h4/mjEIVElndGZ2zlEOzcN+2E46Gbt+dt6O
s/DgulU44wcT41vanT63oJwTPqGVbdq5DqKOjJOSCzBjf3IGNg6AsAK08qKw
zX76p8ePMCbXHd7ZO2/TaBrHKOkt3JQIMo3bI+aAS+LS0PUY7UCJmc94nG7W
KHTNcFcrODQ+UTu+kNwnNTgn1wiK2TDROc1I2TeL7G2BJOMW9hk4PUE284sf
eXguDDTwSQtpJXaN1/jbFiBzUgRBEClgogKWIxo2oLJoBvf9I8uawDcydUzt
RhlCLicZCTojXnOVn51TpIiQGkQij6DqWZ8QbsKBu2bn7iBHP61MCVLkdeBS
EIHwUaMDDv6yIERSMQlbvWV0fNYQ2hSyAupzbDPOHKWofim/KKwzjkswPmZK
K6CBTgS1VMm2cr+L1jadfkTZ51kZoubuRL4ZmKKxnbjAs5ieYxbPGriZbON6
wZ/K5kPFDSYwm3c+bTNHGd6FcbSuXWv8lwUmGR/lm+cmSTpStS6ClZvG1VTj
Ij9nXG2Fn+0swM55Ld6xRIT60kXbzr2h4itbGT8gPPpC6hdxjvVCBMQ+mnmB
CBeULJIEh6mzMQosszqRn6dhiWOGKso6tZ0sYoJMRxOR9Lk4SKUgegS/hKtE
JwLcCNPhgsxknotYMYvGByOzlHEnlqjSpGIqIBNE0TtJ8ORjqhSMVTAe9id6
OIzuiEwXQimWxKrXmHrAEuLYuWdNKIsd8sJM9QYMCjYQpnGtY2J0qeNla2Vk
Hiek2wwqysy3tOXbobFdwGcg3ozjKwLCKZmy+FyvYZYGoRhnYbFKfBCEWV5a
DFWLDCdpG0eTDFXAy9nNNsPEQzC+dVWZNeSCJcvYHockLdWSU8z5xuEgYKn/
wWhpjTz6LudD0KW4IGtmEQ3mT5Llc/cRchSa/xiyoBsyFAiPIoVU0hDLGYww
k0GUBgiW19ZKugNvhX6UkqSHcTQJumJoEZyxgHPVsH5V5mpYKwJ0XYJR4WXN
iW6ysARHOAU03wMJxR0miSV747GoxIFMMvFso188IMtImIuYX6SVxdFZMYjh
jBstHp97OU2fWUNxyaha74eInEscQ+7PUDhIAZI2zuRT7xuTtRJxdV+Y2Qpc
kllZFTupXC5NgUvAh2CBBFGMPGu0TM+QCyo1OVsRfZ/IWMTxgoykDoHR4Hod
iBc7ByRyVSKJeFLNNQqyHcFR6JLXxCW37TwZ2SQbPE8pm8CZcx6ZCUDxDSkg
ke1k1zSxZd5ouMdNEuvWSFKk/wmBzjwkbszIWXsdnIVh7ovsJYqi0qSSJpRT
FoKZtO7tWOulcONA7DjioT4KbWhJyP0bfTRDnxYpauVPyR8cVEqDhMxnohwq
ZhxTJZGRJHeGSUEYhJ5VV4osWgj+9NiceKxnvktw3hJi414ljWBjQvnHoTgQ
uo1mqXFu7BpfEANRp7zA+QWUZSJEdAs2S0l7GSLCChuMjhic1RklvmLGyBwJ
h58B8j7jUCipVlK+czJS1FxwrKS2BI47aGlCQuQN5IzIPwvcICGl8ZGSIyBu
BumbZGtjsxhPZnDQAPGdSaQhL514asl9Jonxk4iHi10MO8DSqI92l4ApGQER
mMF30BiPz847gmi0HMFlWQjV4ZxDz0wgmgXaU3bImhQpTPMioPQIzy7wtCK5
GDGcsZtqPL3tnC08LIFMPZUVoJlb6DKr7gNnMKSb8VD6kMsECjKl7BXtnemw
oglewWkolg7RTEpGcTPcCF7xxhoLAqsNRR8scmFpxeZGxdmb7UaQn8Fs0SVo
uKewTi0UEjZKHNEV2NMHnGw6gojs1zxVgQqM8reR5CxloBNXHCjSyG0NH9WL
oBVNcLwjqMVmx1wLdBtsno2zF3WHdDsI+DXGf/lgQg2DtI70pNUZq82VS6jk
TlfZ38Jybrq0FM78yb4DRelJ3V2WaLKTXJ7BQT/DJnGCQG+pI0KyZ3mvU8yK
iBcXKf3KE3oNYdSpOQcjx2hbwEGgBQVem9RQQGU/k7f6Pdm5STDxAeuoE7YN
PbSI1G+0fkgenbs9Hk0pDV5oiEX6XEDKpdRT3SYS2lP3RYQEyB1qq+PJdUdu
dxwwGolqa6shlVDODroX4szCa9IxS6FxM1z8vatBN+7NZChqLmINriTFQ+NH
mNBJJGA3cz1B7SjSAeedFYCdlo0xrK1X/9QQEnWxn8mWMKrMtw5wnXdyMiRa
Q1YRJ6Vt4BR22xq0bTMnuYLM8Z2F7PP6SxhSXGipLpTTVqEhN1FZuK+GOKiq
tDp4GwaH2HqwDCsvl7LWxs5zVFQPJd3r8FJ2SMdOtrHLvEZgvklwERF0s6ib
HaBr1HfYj6KGtlA1CvXRbkcoCeQZfCd6wwtKFiCM9ctMUQ1dimi+PwWjvRF+
iMCJKTRoMLIVRM47rxr0QCfmBUm9DwgMrT5CUghe9l00B3I30zMsOEQP7ys8
KXhhznpixbqRSZlXsvil7iLpgDQhFNOycom2EKMcE46vz0s9CSFA6+hOTA1P
WtGAyZKB5MK6Xy5/oeexhi1YostbPISlplQa6Vl0lrXIqRWZQ9O1pAyMM7cx
6E+gtxRHirtzuIth8pEbauokLlTxrfTEB9BIWCq4OtEs52YUNNRQ2RSFGR22
cZzzpF1eOoWlja12uTI23hSZJY2ESfXKhdrGZ/Uz3Z458Uz0uJFgnacBXRN0
THONNATapUZ6G5CB1WUFstiZ6aukVkqzNjzc9jtitEUp8Z3RvDQdUgOvvf0w
FZK+jjNCyqhPRzxBp2EK3MA1yXHRcK4vZDYMbmmLMrA3cAAtkKUndx2qYIFd
oY1kLWo6OenUPXfb+Fu1BhQY3pKP6NnGIsvrIGkYAlZeZTgio1MsdJxElJ6t
66H3jbqJBCq6+GhnON4yo1tmBLggprylA3tEOpe4OStH45oowg7GlpbIrpc2
DzO9hs6EnRCVU/pIXPDRdPkp2x1SB6ddpv/1QNB1JTjYUTdCholCFDzfqfbh
/IzIPyPZl5aJ66nYQ1BTFaDawZUFWYzZpQ+RAPHscwziXkeq0CYbecHtWWyH
CBwijADewHfxrhFn5dlB2IsgiDKMIqeJzJpKZgz61QhR4Oo8lXUaJGZxZIvm
tfCwoYZBOMO1W2PN1U2Z5mQTM2KVj3mqB4TOS0DI0+KtbUTMFIRAfpY7f1QR
NyTZZg3lTD1ihKt5C6advEYkl/NxroeQqgn858vy9kgNI3nX1bPwvWjOnZxd
dUunPnZxQOJeoDryTrpHYeYUvSNbGn2rMZ3rCMi1gqvw3XKQJJ2Ehd/mEU6P
/7LCZBZPynmljaNBU9OSSsQkeic/SZ2COFtxlBzvxPHUic3DlWPKRFhSq+N9
ZszTtCkRXOBVni8cipya6eFAldk3TxdH0CjpBF71i42xuKBTcvoxIPM61kRL
qCgZ0yTXIpHiBn7puPMK2BaWFDVFGmziAw0ozUyZBWo/SXHDN/LsHXb7E3pz
MS/A2CUG+mjTBODZeZ9KjNdVD4OWycbVIbpWxJHiwmvzeKXHJYRV5wIVZykX
Qn/IFyupRDEi32ijINIs5GlY2YEeADNwMqUGIxC11EmI0bIg50QoQCgylKk4
U0/FQhmtmwWzm2xDpx5FhMtY8CxRqXjHoALQb/dcw15HNlg5r2Elj4ooaA31
cXQBGK1CdnQZK/FU1xHaNypD9K7COzzsEO8Set3UCOwdWautb95RaYQPMyhJ
zrLYB9pcXZ4o5IhgNUke7gRkd2iWsAr20AXo9iNoKaHYkoKf4k6neREkUaLG
tCFf8DwCvtiGXpo6RnaSMNmvoBi+aMXGXRssCSk2M+nzYIlQ1Mt5NQmkwgMO
CUcjXqTVRFyYZ3k5GazAf4pFqrnCQ958GM0ghqRNNqhHWkoXekjgMAEkKWIi
+HMEGk2/4xry3c+nZ+Ul/yOvZoRYHeWknHMCQapeZBf1roW4dVzWi0TIqwAa
lnYS6i1BsTNkeiOvVQqwIxr27uz6aHMoAbxRPFMb7GSXz5fc4I9C8yY+qmxO
RTnycMwOrbygve6DpZoegyV7MkUP4/7GiHM9dcernfByFQzzbAurdtznGpkT
Kl3lHcdCAQmMnUVjHAHBlrod0CDcdXzbzPQMTzQ7b+aH4/h2XURkKkDZyMLm
wpjCEjODz9vb9dQFxdS1MfsR1tGe7F1pMNuQvSvGXI/X25WOfEPzNhnSeTV7
iXB+PWUbT1RSq8zrOeE8eFSGHoc7uy5tKM7X4+ikUx9NYU5jNvOJK+ltEy6Y
jm8Tbi/tobc8chM+itFZ8/VVkqprJXvLmM4pdrOJW3IcNcRCHp2oyQGdr8XZ
eXS2eh3Sap18STSYV1NM87/mQAhrkXTryQHn5nvMEYU6CynNRciwg2vATr4X
UbDINolgkr+XhDvFcU5BKWGfp4vLRDsO0pxQjCkay8VryaaS5ACfR0j2eziS
qc0B5KjYU4pRmD2P1uYkipTjW3zSeXZqavwKjT9fTHiWHOKCYBWFMNpaUZqY
MQMbhpqlIqtWNfN1nKKarplPeBqqZOl46SxdFgTzsnHW7YzEZx5Hg9duPD5N
tCwhpaBHMc+wlOPME2cqxyVTylpvipoKTcnkc6kdmXs5Isn+IhZe0QoL15Oz
TJnhPTYYWPHEAx0SaoIVTS4Q2eb5NNv1pFloTIuA8L1rxJpMLYzRkJUFayKm
VXCnIihDraVG55/AOTS3MaxxnJLSE2DazyDFVViBc2rYKgxlkNKYE0oyKsNa
8npqlinATxAJIda4RxAqSKcIMCVc4W3gZ4GqkvaUsxOBOBHu0p4T4SizMvkS
1jKNIHzq3mZeTS0vgkREvYoKFkbmyBbcWEtClRBlhLMjwZh5mm5eWTurBi/5
wziLC+uJrukKM55gsg+OoUQN8uIi9/9NSLF50RU03l6GwT06J/iZvUimJjvX
qWDRtkAmUn5RhSn2dYmEur+xjgaXw4ZPJ/igsV6HenrEHAteWcLP1xEcvgYB
Kv063FtLZbazDNy8qgsx3ajHC1IQhqXxT24h6kJ+nq4/gTCNX6yspwI619mV
2LE7DReUmJywLVgeHVGJO6EJJ1DNt2e4ymNu1MrznkiKE07llWZp2Ak3A9Th
Lg73yBNbTNUmVe1T3uKYGQ5TKBlQoTkBdCeYMI+DTPoVvZjuuqdIyLmTJypZ
WiYXqZOGdVCndbwRs8sKzvuNRody/CfXKSDnmpOuibVJXhyxXdO+6BpEmo2S
W+6pmpSt4+A++5wvMNbNMGzi8DpjqN3XqNWNwzsWQQeZyCYmSfvdCAh2cczT
NezU65vxPBUjs9zbS10k8jbjuM/T2FLXMSer1lbU1uwIvB5HOLdBpLUYB7Q9
pUbdIcIMNnt0HCjxEdkHT89tna5BtOzDSWqlaF2feOjb8kdY0s6J7nLP2C/b
NJtjkJbpGtkV44sXc8rTrDBEpJh0c8GNqchzIUfmrMPZqoySWGthGimNvIC8
SMgg+NB8TVhTDLZQ3VxbYq5LBxvmDCalZ4jor5jzWjHnfiULDimncCC+jrdA
N9ZVIDxT4kKAVnDrMCwl6Tk9fTgOSPYr85kY5KP7rrYpq50GWHEwsRsEbvQ3
SsGcADeGBJdBqrkpBtcRKiUeQcip6IPzU5/8Rs1fMzcsFioaZWnAoy6/BaON
aulRC1jB5ZinrEvF+HMMpQvAP39MmJb+EbtANToLmhvv66Y1+Y5yxiddcOIq
o34r9ntplmo+Z6EwwHlqUeB1mK5BwuL5hdeyAIVIk6RAagNiuUkLXm2B3GaL
Ju4NtY+ha+awxyWx4fZmXhkwJyiQnoDX5IhQCqGPVIltAz/fbFhFjUv0qXcI
a5nLTJUqwNyWKSiywexALZZfXO/+eqWI312ppyBNwI0x0xNEwZ55PMnVKnQj
gwgg7jMd03YwKEHWEuuYWVHGpx9tMGKcywi6VZnQEaG1NqAM7dwgxUfna+oE
grWFvCfCr1tmHZNKO9KUm/HBB7VYogxaHThrkngyYwUQZYvvQaEK+Mhripoq
DOkkNTAqSoSkMmdNcqc9vIiSJbLI6cSmLk2qETTakEoQvM4KY45zJjzYysT2
yIb9c09q0M/Jo0S14ivaNWdWGBq8DIFK8NLPEwGKZ/RGAfJqwhmtrQU1IUEV
JRaxyKpYcQ01SHnFp3hSHUEgbHA/JHNTNafF+4zv5ZHPQ5ZRfB06Mi+zDmT2
ziftnCgaaCRi7V6H0HB+NVqtYkCpM/GEip76woodMalU9Jjn3pcydcPFtoEw
rnf0Gu/qgwITkxl/ZJz3ouRU0X7gxXBxbK64FbQegxpsZWC12CSGz4trmDlT
HiFGUjHXMqmqvRYml24an2GJaoOGim8MsSONRXxbkRG/i/cx8IQi1e41MBmZ
ufZu0KziC4K/a0aAUcph5RYxIj/32QsLKS4CderTKF9Sg8QGgyRzvtdCwB+F
mLIBXp3R/XIZUp0nGyjT13S7Omi5Q52SlrzofpAmpTfRptVBqElwdiHfi+bK
7IQaD5Sbp2sIZCtGaz3PlZQbSxMTVW9EitsY29HilhLhEO7RyJId1KXMwoyS
TUXto2oS7Q+SS20YGicoTGgqkEQKKScd7WyHtgEIxBLQmOoy8swTa7PXE774
zvNa3iLKmNHGIfLbRNYvSS/nRaeRWWwESLqUeLoR9pPIBKpTdUOKCf1C1jQF
4NKZU7d5TiMTsYsNVcpuHn9sRNfiqWOYlzmz4MuacW44oHDcvVurPaBNciHm
kaKKUuUEgwugzTmZ5yad03kacL4mYJHyZA9HCm1MSzoZqMX7dc7MRMuQOz6L
XRMxNKjncpfUQYk4kCcjpWFLyK9Rm1j5SbJKk/KLYCH4T8sfqlPrJoGT4n4O
VZQ+1mcRuWjiIJLmeob4Ng+fho6dwByZs1aoiXu2z9zwSQpZMwu3F4Ipb4Vj
dpdFE9Ik6noOR+g1Um8ebkSasFMS33kaEG2Gv/WwipqxVZAsyqBWDAYmBqkr
RmSvaGCRLCRlwmo3VSYq1EZSmPNulEdMjTY44Am6ehBN85nJMd1ct7XfkHyM
EdddC+lU8/i0qG/oo6QwKUO/Q5hADyn6rJ8VZ7zXnYOTzBw3I5CHEEAxQlx0
iaEXc00JziLRkIDQ1TWUx0MsTZE5Lh2+ZFA78z5qzfhrFqswoskU4aLMGruC
RkLM9Tp61GDqUcpYnAlelwXg38ASvp45wAu9tUwt9BYjSXuVhMJnXUpr2Wpx
+zrMQhINjhnnfQTJEUeGkF9z9rWASEXAycbdpi7KcsFtZ4zYmt8qhaxahSfX
JCAKqX4tIc4bBh9TILBUt0xRKMlsyUQubUZydjxUQONSrBqhGtq989Q8U+fD
FGoEZ8p65iFW8WywqEQ7QwuRlFwi7mnC2ZTEcx2MpIlMUubRu5bQtvxy4Qps
ZxiFbB593qUx0XPCszSx/PLBWuouEyViknI3sk6RHTJLlKSNaFeiF9kFwFmy
xiqjadvailKXhKTbXg7wzH1NSrsOdzW+/8b11FLDFy+i/CLRkC86kgCCpWnB
rvM2hIYqsCDTiuMhf9dELUiHUY7DoZLCtBGmxWg2+ikv2VJdCxnE9BNknIFc
cfj2lq4praLYCau1stDgcx5chYjW4xRKA5O2rzncEnGtsGDv3HMf1lLr5bTn
LoKJwUwQy9swUUpDDjdpBVsYtEL0HLqXmvmgP/RRDFOcXajIMeLSLNrCiYag
z9d6o2ujiHkqhZACS3b3dE2zIyuJQqyiMSKqEm4JiAQmTy5P2JICLsnHqOQk
BZqGXh205IVCaYHAc0NPK/YFuOHi8ee54qDu0LPLlGKk4UQVldbUzkE0zF9R
FVOkuS/01gQdgWkdWhsj5bITK+DgOL1wqIU87Uxm5Czzh6SyozWDSlQgmM35
wa5s1sn3oDQF5GjiW/cIUW6jI2sHNmUu05gqAnVHTD9HzxTJKaeqnpSBCWwA
CqM4QUjTOIh2MXXsNHKQzfPgIJJanoCwwhxfzPmkaCOLeSseseCI/jBojRwh
Pc/Decaq1dtVxCQ1+NOmuAV4Kj6iJ6rAQsgQl4BzSDfKDgSlsi0ipprPPrJO
RrT1lnXAjSHKdSpEMATrcO9tMXD7M6zY7G9gbOUpU1SSUUMftTS4xqxOeeSW
y1yZEolL2WyxvMU1xbDQcNUiJjmJmKARgk6OFHTNoYcm3CY0ays31ZcYFDX1
+OK282PEOTSB5FTyinxnA4pApBzk1FsT5muOdaV+iaiUPgxCylNRb4KilpTK
61qEK508Z0sqApxrfKdEhrNDqqG+EEdYcluZuiZVUKHsjt8YbHYettFBRw8w
ttEYrvVrBYc5FozPIciChmxKMJ7vea6sY/Vw8M/1xZoHDITJlYvxD+SsJD2k
cJlT5+FewlbQKNkYDNOQ8cXneqWQJIzwkmGCWGunJI4HlrIZrCEpyzAOX69S
HNJQmqUk0RyFKH3hZNLMIqYZwFYPpn1TRHBNCBdNV9LS4PWkp00c3PHJ2Nae
Bra30UeWehhJLfS6yoIho7M4FwmVKHqe/JWJDidvyzISdZjeZspFAQmlR5E5
D9bymApa3Va1CldQA5plKkNjatDBpfOcDUiDZIYLhlkoWNWrqOVmNYY7MV/A
p0ltotvW+cbD69vy7EV0CN6QiTEZ9W1UtnAZM3zCHQRCyZZrq4BMkxZKLqkk
vnhlRLurTUUU3onohAoVzmfae5PPc0VtCeO0OnWrVml6iqkERc1A9TcGjvui
Nn7EIQj2+9tztjkYE8YPjvAgZbLkxKlcw4yh2KWAij0TCVgTOHittTJDmnHL
F4RKROG4jTNOUA0WuiMTubZWa6X6BHdSmoRgFQTjqtHSz4r2kvJMXbaEcjyA
wy+CgKwzAwkWccFPlpk7LMOTVcHraX7K/oO7E2aJ4nYwRsRcerDE7Ux7MRLn
b5OLAwjNseXQJCpFbK2+R/NKkpdHSCjWwFReJQFbXCMzliUgGSkRcUKmtraW
dx0n1wIBv1UyBI9CCeCfWkzPMwcY/7YgiZAt1Quud8FapijHohCZXG6CvxXJ
WW1YA1nzhbqBKoRGDmiOb64Oob0Jg+fwcQaJaEcDbrMrb9NELhgVpj5nJLXa
BpRCuIUtLpI6QsRBk05Ck/Fs5SMfP5ikIpMSp4VrgTAsUEFUzxUZkfdUJrJS
BXjXBEukViIq3XhbiMXk9TjDun2bRsFGC2LOdxX71czV2/yCLDhiaouLzydc
VnxuK2BUBp4nw8I47Ps5v002n///pZphcvM8jINvYv+Rld7/hLv7NgQeULKT
fjvT6aSJbVEkAIJKXzuo7EDO7SvDc3lmdEzm/6ZGLtaGyPqzbaenugJzPBCQ
43LjWOavXRGno1qFEaAKb9DxMGN3bTtL0V+MbcnVT4thwae3luEFFzZ43r2z
pmgLsGgTvrE32UL+cnsrgRV7iUpeaGZpNtH+8Gmx7hTG8A65ebf3Te/7v+fw
UZsvtubyaejtq3f2Ter+oWsmkOZrl+33b3W9cxsbbj8E3S7OvUDreUVQvgty
kg5Jzqf9IJPK2FPanzA5EyFbaFne+7pdUfuuqV0/PaQ9Nj4R7bYFvFbZD1IL
rrttHgJYF/B25a9SLRWf++t3FSm1WUetJfhEi77wXduu8rw80xn4cdiLxzi6
w3/Oyc+6+mpmjk19W3tKhOz6suVolSC+eQuJDTBS6vOxu+fo+qfjxw8/7J6R
nBWNyE96wrlkpiVz7uG9ZvvYPmcyUWtd7pL8s8BgV3HozFEb90EQQJWS+9Gy
/tgZ9rREE49Dp6gI7i0DuT09oPwi8p8NbueykQVCNyq32PVpCtwX63GVnrq1
LnfP/E3RDx9VD//ZWETpTPyzypKf2SKpOqaFa5rQXdA/LG1OgfwEThB51MmW
dwUIP5k3uvRWkZ8mTdsblzlCJe7CWPv92d5eKxaX7evCwkWh+xYi83zmJy29
e/Ki8CsFKDu3YuJduNW68f0Qb4miGv1UzZtpaKOiU8vlBUD1GzOrN5h3K66Z
p0xtKt47+OTet2GHBAkMWMJPOCSD0ytmnF+cRCHnxwKksBw3GtjhAUedddxg
/uCnizuKzLCOG29mgC1XdigeQZDE7Vx9zoct795fxeeGs81f3axyZ+bPBWDH
5NSzhLT03A1BttFuvCj+DNeH3OJwmLcf1LRF1jZJ6xvfQ/oQ2oWiJWPHsty2
WaNTb+qyMv28ncgEuT+6zUczeTiMTFpO0JvN/r7+Nx30SXMuWjefMJk13Z7j
rQNCmzX0ponZ9nifGV65OyTZP2Gb8L5onyZWFG0y8C977dR9uca5eg4pDMDd
rl+VtN37Nn4/1JbPdsh34bGtzz6KHuvC+I/sHZHe7wjOPLSZgk9rTbD7rjWG
udKn9dy7SH7aY3eDRpII8R/ZFu9M2nboeP6zmdLnoq/zy5HP+fd7tq09jELb
8LYx7BZ6evI3SVgnjmMX20M8D8E/Z/6838jH5drrJdtzveA5S1sYbG/8GM8d
PJ5TcbvEeAqjQeJPSxzjq7R/FeTjp18S6vuFPoK5pf1Pyf9/JuSOUHgxv1lx
jX998vr6oQQPQvfAhW2of5XQ/4bSu6i+efhDhP+h1sfu5znab6qwXfQbbN/h
5CGYb0DyfUIenvCckM+itKvpR63+8PyxuX5d4vs8HDexxV2Lun5T5YdVvsz2
NxX8+P6X9Glx3unSNrHbP7e13hblm73ER2OfqLt03UnWN+98zNhmC+P24d9s
/CO7txl+ePiXdf8mgI9P2DLxTmY/pHH9c+Sbn6TgAZZPq9wk+aO27PIwt5fd
le9POXnO/12E21o8o+juluckfNS6m4/mw9LHcvvvLRHMiE+/UYa7bd69frj4
odDP+Tny57ncD4E9XPa9Ajxfs+URw36Ovwc/Njdu731Y4suqfXzzuXzbcj/g
eXvBHY++hOh/rv7Hsj5s547+dzv9mO11Lx+pVD994GrvM59/Asl27w8JOXfn
Er44VejOtd7t9HHdD9d8k/aPPw8P/8jubfa+WXH7+5ukfRS350U/J2d8znCP
anfLv5+53ujgx4dVHrL9111/T+Evn/YnwdmW7CHJ34v2l9n7uNMW5HMkd9m7
o8Nf6Xl8Stpz/v+03Mc6PuDnOZ/ffFovSueH/zxGLj14sfqCGsH/Em3WiWu9
OaTG7CPzLJV2POP3TbeVX81/D3dDKzpOPfn33n9XbrrVkSGdY72m4rlpSSz3
DlTzN84jt3n8hj284nG1GWoe/rJjKoy+9OYQex7a7JjanR7lwEZssK6MJB+s
wrJZzP5R0wMICXiMV/8GpzKAZ/aveM7WvrG0Ixx+f0uZg3X8Vw573RXVo90b
ax3YdVvr8BZm04eDBxGjJyeLNbc7zaUL0mPyfeYwgzclN4rxm5DfmAferN9H
WyVyPjeNcjjJQG+QdIVWvZkILGIev5saPUWNOw3nx6aUv0nrtat7c+Z9kzQq
TvT25YSTzGfbLO86FmoztrYv1aKZ2Nj76L83otSVIXVvxNLrz/v6Vndw51QS
3shhI3i1e1sdG2hb/EtIk9H2VCDUwgNEmBoS7abvi7lttRbajQezb5L1xBjD
yzzPKJ+rM3vGHHOVcpiSBx+V9I+GCyLjUa+9SlwlLHmmevQnu4PnRlKBky8H
uOBQr+K7UZGj5aI8idLQHOfkXcTabCoeom0qOo89zVVfgzw5ckPzEak+/Trc
SFOGRpnGPlQnH1Uwc8ma0q5DcRCq621jxwlAKld58URUb45AAyuBpberqJ5X
aM4SQwFPYUhzmJAxsdlyO2OBfdjC9KtQsDU5EecQbWclpOA3Yi+R7WaHOr+I
E5d1B4kZDx/9/SYyQatelEL1ppuwg9BJaq0g0dEvYEgzYo4gO1UhJrEdVpwJ
PBYut4zJ/xBCDVrnkgrPC90ZFlTGq7WA3moXFsfr8TJmlnqxggLDyo6DTwMX
klwBKsQgAOda4AKrf0oYF0AmKsKj5qeb+NlSsYWcB8ekYK4KmQyVtkzKuEvp
WnR/G1AcvmuloSbTRoETt5M+BysOJJdiTCEZi8ZojLVmV9c0hJuQAKRzv0dH
eEQ+ycd9EXvqRg1BC0GSLEGZAwgHWWZcRsMZlmny4tzjbBE2tQGuZsO2ljYg
h29Z97JF/m9i7/5tbDn3IFWbKt6V4M3iY6l+qm71qbGEmkIkcB75O1lmLMVw
Hc3FtSimF+TKp719FyMX7EcsYWhdtAEY6ndEZkqbAsAzTDY4keLYPGdJvj1z
PxOIKo+UX+ZqD7kN3zfQRZKpacRtcHwhmrwQlaQNCBlPkaVdNrgKU7F4/mUL
kW1I7irO50oiDrN9colDsK3UN3++zf+a+d05xiTXeoSL/U6QzMZxApXc6eVY
pHWfXlXNvW8dACEUOTC+3/H5zOuAkpzefkNsS05ib9GZnpmlZf/Tt9nGzPg0
jfrhW17que8tWNPMjh2zZsSZwXQ828TOJTY2+saUBoM2jOxlIVjWMeAy1aN2
hzmkHo+vSwzzSP9tdbDuxF0hnpW0mM4cFWVneJUwWoNhqBAchX4PuDxWqJuQ
+G+cCzNhnicr/rtBDK3BmgXqvxfT/okm87CRK1H1lRNdwOExNu8IJxjYzlvS
S1Lm0ZuXPVJljMH/tngltp3JVIbfTtuwyWZBHZCYTGQ7xKphmEOTEzXKd43y
yWxnjQuj5GhUIahLo/IjJv5mqfKc2v57IpFdLLAqnAuxLw8pKQ6qcsHb0QYv
BLMgHU6VsWs1Gie2JBSHrjf6oMMWnr/puzb0AjZuqKuRXPsN6XYjGAqP0pcJ
H9pmNDuGVyotqQlq63ZdkOc8RQqkEUDa2r+WTElW7+wH6nIU9pqQMp42jNgb
wNmas2/Mw+Ximkpdn++oFe8KiuxQgyNeh2IXpIXkSYydXF1/em4tNbMfeEXp
xzRmqujBlBHpWqFbtROF1TVe3qB6MVGRWcqZTlTi1pyZApiwN8UObzOn8lUP
rUJmk+CtZjelS1Zd8WWIqsvXB8KVpNLd05uCCHNuiqaJb2brO2UpmAfDNDM6
86zuw54rulk/hyseXcAIcQyr+rF3VCGit57jlq2Zrm4zDDOKgMHJuRj6zMj1
PZ10cpS4sX+B6REMMTMEBqqlrw9neOmQGd4vfSZMYBhU5NPZgJ3ovcCSfjnz
XPHgNeMV+BSurPY2HmgHmI+aLTeY+W8exU2StDUaaiP2e+g3CHJuC/cu+oxE
bf51wXbL/ato0iQ3I+csli1MoBJ9DPLkqRti9N+SJh46wUI01gt1m2MrKF6o
ojaop9nGJBkN18D8yOVswCD7qmNwdoqAJX0T+8J/ERgVdUuwQAaYiEW7KWRa
HMgXKLwhAb9BxSajFQC4o+ezY0Z6Ra43YqPXGH4UnCQCImR1nKWpOhoqaN8g
Mvxwo6rUQ83C9t7jgHsi5zVPgvyaW+BfCDi8I/M0XU1rN2tXwiqxZeunsqoS
ZGuwoA2tgn7tMQcbgYQ2XQ0V1WgzHLyE2jLIeBJU7BRibuMm3uz/yZA9qBk2
P59ocQUlrVUdVi2loG4Mx4jSZ5bYy0q93Zo5E52pNmwTmQFf7AgBSBdloDQE
tn6LcWgTknHFzFYFKzs1W7lFBhTt6s8G7zhweKXCey8thpPbH8gYxPCEthek
2VJBbbvB4AtAi+Qz/iEtfeM5jQ07tXsEOjIVgJicUcHC58lcOdVFXnaTRknI
Guw6WgyZ+75RqZ4I9WXGZbMWeE4uCqBagWFxmXY0L4k2LFZJLprjjCI2+pub
pY0YUQUzIjOUxwLlzFONT8MmxhOnbujKjjqTsUAlsrPvLP4TwTt+Qou6wUmk
C53qDifAVsXJyDiERDhgJ1+HhAK5DQnlfYbCsO6/7SCFzpmprblzwR0ZJBdQ
cXm/rcqqVEqK5hToOUJtoEXy4dyIQMwL7DJkLsoK42RvxuJWP/X3CLyFmlwt
r2pR9mzuUMe1Gqc4T4VsQt+MtHJQBLAzwBkQDwGoRJkLkaMEqcwkb0EaYm5d
og6ESk/ukbMAPhIsPfGd60PeL6Ya1mG8mV/n8AN1RoRZcsZJu7bD+UIsqO7j
RqANXg414FEPzE+V+WgrpQA4qtXsNryWkBBGiEzHCOC9DJQDxXpnIKQjLJkl
Ak5YXAPOraXZel5ROLctYUYRCgMGZyNFJUdPW9gEUSJz7Y0v7YW2k6d2s2GD
eTurvjAGMgDQJRHzalWuH9jOIylT2qXiEs+llrLxAxuv7RucbEbRdHB2pELE
qXLGPLSpAtKF2c1lipqeWouBjUia6AkWW3LDlbEHDW5HGNYuXr0iaCKHWBxu
R5ppdntroDMFtkA1EUN1AVmLYTidqKktK/DpXnwF+I86RAVT6AHYZYSZUGwP
CxouJBSSR/U7XS/+Qp9tPNB3VDsd0opKsKzYr3p0mq4QMXPZNkNGztyEuFWt
LZKWbjPa7lS9XoEZJ+JjdDelCMC7EC0kGrMhvJ/SpTJZY6lv8lHUohduD74c
rJFJp74A2l7TUtMo3FSX4symYJFsIJFalv4b/Lilq0SnoVpAdCin0R0tQ3ot
5XPhfGPlHGQpP6BeczlRtYUErR5iNiH4UQOI4W2sxiqOijt12ju/2OsR2Ol1
ix1FotoguJMaol4myVVPASmswEA+AW+CvEuDokjxwMRXYCYgkegVta1R2pow
4HK3hoiLaQCsM9TkAKfEB+uqEfCgowT2hTAqyBBeVgqwHFbdnA5sb06/Lp0c
JXFd7bVraoLyaS4wh+Qd23QEBtYrBssLNE0WRSEZbG6dCow6OeV/TnxkS1+Z
7G5QYLOpni5fWCz2zR4tPK1DOlmOdCmHgrEDKfpX/NY3Q8tMd1+7wET4HIZB
Pam0oJtrifrxFGYNYQagYIX/02kBoUaUgObBJseQo7t2GKGiVk4jk30WQj2D
xWgckPFSEliU0+CxXFCNhZnSpUmC197LyTh4dD3pZLpiCWaYWLWwyziBy1L3
8WFChyJio+gJAG8UDQfGNJ6ul8yP0ULZdOclcaxUMXrUfAptlDIQ5COL1aXM
BwKB8ABSbTOwRxOS9AHUTz0TvVsMsuy7EWhOtFLhYAG9uHqiPOQJVKCHsuMr
EpulqhRAYh1AGNXudSwgyvS+dmGDIDg6lDtaZbVZ1ol7Kens2iro7NspDlYP
rb3bP0xn3t1wket6zUk88eN2jD6SSbZvcbRu6+zvMkXBVg7doKG0VD3OTJQZ
9nQvPAsVsSlUXDgBntnBQzGELrVLo10WIoKfIik0XP3U+mbLkU77lOS6Bzna
Qqaj6pJCGa91Y1D11KleY0iTtiV6al6CUwSGtpKQ6+LgogixpX4iyJ6VBE/1
jt5b7RwolWjH9gyyBHZQ6G7yGNYWoxTgeR1MiPH/crQhnsZAVQ3QvfBkm/mQ
O7rHYHS1P8lUo57HqE2vL0H2nFWqBdkXbqNra566MmPtLEt89MTq4NNtqojU
dnMfJaZI2vyoD1beOGe9eEG6zQAw3LiHUD/z6tnjE2wSFLyfZm0/gVJM99Qf
zFaSCxoh0FD6YzMGEEKxo70iGDIUOR+R7aAkMY/OuxikbCvRwkD56NeWaGH1
xC5Ov+NVwhGZFBZqh0oVjdaZMpXdxE4su57kF2Eb3pZ6d3P5HKn9NELsB1hQ
64yMHNqrJ9Zq1r6rvHe1XYOwSEFUOJlELzx2kRqeP/LvsXfpC6eveSlU1B1q
k+/jIRAKyAJRAanvBT1IzMpztH51Q8uUtDdsT7odOWoUq4Mc0NXzCRJuVsvZ
9oQ/JMLRFF4hL5XqU7ml2YjVp8nOKRsTX9UudVKNo8uUmBWKlFfGn2BrK5xz
Eu14hGZiCEU2WPR0FDHIoChNyalmYDHh+uI7id4qh680icwIT3/vFJ0XP6JW
S9/s+f0++YvuDLQLD7LcoSfHWO+aVIxU/njHpxOy0JZ0v1CvoSlKYoLRpbrY
HV3rK+BxYWnnBD6WKm3PCcsUhBIkSq+gJEF5fnRJQ0QfhAeKaZsJIVodkYjd
BNKXBLT+NGMWNfUTEldOV7cBjLwsWThhzH3C0iYzAfiEUAUZkaCm0OeoxRlB
yr5quao72dG1jm7cioFkml9KbPVxGEu4r5VxrWSlotlAKZIu2Qs/MslhNtJ4
uDoHVQUBV9igHlUuk1PzoFU3RIMJFK/ttBEh2IH+iE699nq2NuPcBx1QLfqB
GZkhSXs7dq27V0cdzyhB2wiVypMCQhXw6paL+qayNsw0FM3YY5fxNzLDXaA7
Cx7n5snUfAxTXLcYio+6FMgNrhTA6hM9joTqhkFE0APhW6arFnAtFbq8a0/B
w7g9gVt3QLaM8hU4myoUEV0rqLzl6fraqbqngzt+yNmSLxw6KpLUHy0TX5b4
WsoxrGBLy1ZmXk1jSaLKW/rkELSWIvoEti2gq8BM/PjgDhzJAYG9CSczoZYO
w97Pg5iCITgBwkwgZKoemA3uHJTfnoezNyOd8mVbiU2pBK5OFmKeIw0ANJn1
lZOn7NhC7/SKiEIvAHqrfERCKeGs/quEaPKFE3Zzn5EZipIWonSLJhiIiD2M
vbUWAUN2hIEB5YNxbhnHmJGf5efMMAjgJg6n0gJS7GnuHHaKdXVKiVt6a7PQ
Qm/byysCBt8r83zdwaltntEr/aKrRGu4BYPqmzW3XiX1tcF07Oi/DiyKGxUc
j93fKWWrDTXmUGwp7kXEeJjCJXyuLDCVhDr1r/CTSqxnybD9OkAm/cN9hTK0
Q5szoOv+VWW1KW1FhNWM+YijBJ7Jojvh0ChRJk+AU8csgABV8EXySAuN6ttv
tMZ3IbEMQEbIbwJOQo6koFeWD5kBv2pq0W7QxVxEoegtXEu00UHQ0QRCEEeS
pe1EP+ojBhrHppTs/ngyr89eXH4sTIgjWYMPsX0dpIz0oZTEObwQJENVB7cC
vOKdoesrSA5QF1OXxYoOUsADYM4xFy3qTFTRV6N1OoBENRWPq1PA45ouQewj
yCfygNKf7fYLC10sjSHhP69O2DNWSXsZh2az3ch7F6/b299pN8vY2taoS/U6
B9tubjf9VCcn8g/4yGrApZdy509+J0Lxce2i6ylpV0fjgth5PK9Ogl9830fi
52gw3ngMOrRW0B7AItpn0OeV7Eu015+SC3qqXBRDTU4Q/t3xhidcy5tGb9tO
/whP3uUtkgynKps0CMIZD7QIK9TUoj6whNiefTut9GRW5u1q8PNj8Z07tsns
dUHAKh2H0WXMCP7jRL9YEBWu4vioO94k5hrqmatvtC5s2zoRTJzME5DtmXvI
Kck5JwJyHHgTSN4+Am6it2c6oNhUOs9mnUxuqpU14hFi5X96kLJAPCrpfjUc
wrrB4tq5bCreYfcUCJssLPbARt3LvVpilQR4s6bnpZA9QpTD3+QuKpGQZpka
EaI0Oyp1zCQIm6bBEPYerThxLvcWsbNFznLAYCQp0rQI+dkmdAFuTzkKDC8g
X6uTGaDtIZc7qCLJ+NapxdPvyu9JA2bVavvtL2x8TVGDOsAzokUC59YlzeN7
eHQnIILIdRiBIbB4QhsrbtDY2NRA+CZOm6wjk6BnauMrYJM+mfrM+eL9zRdT
jcbdO12MMy8/FvRJedSnnRfrb2rv2fJG8Gw0P4i5wb/LtAmjJ/8Wz06pv0ti
MMnl8+rQjQPA1N4zy+cq3zmZ7peYavw5Mjyepi7G5sgvI5aHLGshsZGctQRQ
76WPvBvlppdl7RYjmsW6XsfyvogfqM7M9M47jLFzt3eki9vxGRHOri0dTf2A
kwJ/OMYo6EKohQL4dtKF2AN+7URzec6M7yCumc294ydmDXzv7CeHO62G6Iez
fcdd+BKn+LIHUntdcHIG1s2mXcnjViS/wT5c0zJc1Ini/fC1DHpLYPWlUvc2
g5hs09YLH63RBolyR6m3QEUbNrvnL6gf/M7Rz0wVCgOTwezLESuuE1ynwyIp
S/dfCtHz0M4YdTJ8n8xIYKBC72MLbZhdniOsbr4M8kfU0mqX1PAcGS61lcUW
clF4iVN52FSKSMukLe87h5vswT9cWXqwBklYntwbHGLwpl69HXAX/byL0Iqv
YnMjKwhV99ehYQezvy0NodgMZ+dO9uVGvbW/b/5MnSGQkAqND5nVTGZILh3a
Ky/Gt7Tt096zWurSUhoeG47cNdD4tDeCKscG/+ggV4+wLx3JaacKrViv7Mvw
h2XwVvdybM4bbyJpdb86xiLnPlHpeh6IwvvblroeM2aG3x/9DxFRy5w=
"], {{0, 69}, {2048, 0}}, {0, 255}, ColorFunction ->
RGBColor],
BoxForm`ImageTag[
"Byte", ColorSpace -> "RGB", Interleaving -> True,
MetaInformation ->
Association[
"XMP" -> Association[
"BasicSchema" ->
Association[
"CreatorTool" -> "Pixelmator 3.5", "ModifyDate" ->
DateObject[{2016, 6, 27},
TimeObject[{9, 6, 41.}, TimeZone -> -4.],
TimeZone -> -4.]]], "Comments" ->
Association[
"XML:com.adobe.xmp" ->
" 2 \
5 \
72 \
1 \
72 \
2048 \
1 \
69 \
2016:06:27 09:06:41 \
Pixelmator 3.5 \
"]]], Selectable -> False], DefaultBaseStyle ->
"ImageGraphics", ImageSize -> Magnification[1],
ImageSizeRaw -> {2048, 69},
PlotRange -> {{0, 2048}, {0, 69}}]], "", PageWidth ->
DirectedInfinity[1], CellMargins -> 0, CellFrameMargins -> 0,
CellChangeTimes -> {{3.544379162237352*^9, 3.544379175555642*^9},
3.574009622854604*^9, 3.5740096771925993`*^9, {
3.581868126615425*^9, 3.581868137389792*^9},
3.6119448864400587`*^9, 3.644332879574626*^9,
3.67602184800485*^9, 3.6760221842131643`*^9, {
3.676022245795371*^9, 3.6760222459531*^9}}, Magnification ->
1.]}, CellMargins -> 0,
CellBracketOptions -> {
"Color" -> RGBColor[0.739193, 0.750317, 0.747173]}]}, Open]]},
Open]]}, Visible -> False, FrontEndVersion ->
"11.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (July 5, 2016)",
StyleDefinitions -> "PrivateStylesheetFormatting.nb"]
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 266, 3, 92, "Title"],
Cell[849, 27, 292, 4, 30, "Text"],
Cell[1144, 33, 253, 3, 30, "Text"],
Cell[CellGroupData[{
Cell[1422, 40, 102, 1, 64, "Section"],
Cell[1527, 43, 667, 16, 32, "Input"],
Cell[2197, 61, 754, 21, 96, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[2988, 87, 106, 1, 64, "Section"],
Cell[3097, 90, 1781, 27, 144, "Text",
CellID->28],
Cell[4881, 119, 19588, 341, 150, "Input"]
}, Open ]],
Cell[24484, 463, 115, 2, 64, "Section"]
}, Open ]],
Cell[CellGroupData[{
Cell[24636, 470, 94, 1, 92, "Title"],
Cell[24733, 473, 1096, 25, 72, "Code"],
Cell[CellGroupData[{
Cell[25854, 502, 104, 1, 65, "Chapter"],
Cell[25961, 505, 323, 7, 32, "Input"],
Cell[26287, 514, 164, 2, 32, "Input"],
Cell[CellGroupData[{
Cell[26476, 520, 117, 1, 44, "Subsection"],
Cell[CellGroupData[{
Cell[26618, 525, 543, 14, 75, "Input"],
Cell[27164, 541, 297, 6, 32, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[27510, 553, 164, 2, 44, "Subsection"],
Cell[27677, 557, 1861, 45, 138, "Input"],
Cell[29541, 604, 1960, 46, 138, "Input"],
Cell[31504, 652, 1988, 47, 138, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[33529, 704, 112, 1, 44, "Subsection"],
Cell[33644, 707, 2482, 50, 117, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[36163, 762, 178, 2, 44, "Subsection"],
Cell[36344, 766, 1323, 34, 117, "Input"],
Cell[37670, 802, 463, 11, 32, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[38170, 818, 264, 3, 44, "Subsection"],
Cell[38437, 823, 2349, 54, 180, "Input",
CellID->153676768]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[40835, 883, 158, 2, 65, "Chapter"],
Cell[CellGroupData[{
Cell[41018, 889, 7724, 180, 604, "Code"],
Cell[48745, 1071, 26722, 556, 62, "Output"]
}, Open ]],
Cell[75482, 1630, 7660, 185, 756, "Code"]
}, Open ]],
Cell[CellGroupData[{
Cell[83179, 1820, 243, 3, 65, "Chapter"],
Cell[CellGroupData[{
Cell[83447, 1827, 106, 1, 35, "Subsubsection"],
Cell[CellGroupData[{
Cell[83578, 1832, 287, 6, 32, "Input"],
Cell[83868, 1840, 109, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[84014, 1846, 211, 4, 32, "Input"],
Cell[84228, 1852, 108, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[84373, 1858, 149, 3, 32, "Input"],
Cell[84525, 1863, 9050, 218, 161, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[93624, 2087, 104, 1, 35, "Subsubsection"],
Cell[93731, 2090, 302, 7, 32, "Input"],
Cell[94036, 2099, 1382, 26, 32, "Input"],
Cell[95421, 2127, 1203, 25, 54, "Input"],
Cell[96627, 2154, 11677, 263, 433, "Code"],
Cell[108307, 2419, 1054, 25, 54, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[109398, 2449, 174, 2, 35, "Subsubsection"],
Cell[109575, 2453, 1123, 29, 75, "Input"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[110747, 2488, 345, 5, 65, "Chapter"],
Cell[CellGroupData[{
Cell[111117, 2497, 2216, 56, 327, "Input",
CellID->399992287],
Cell[113336, 2555, 79399, 1497, 227, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[192772, 4057, 423, 10, 32, "Input",
CellID->250324149],
Cell[193198, 4069, 10673, 269, 60, "Output"]
}, Open ]],
Cell[203886, 4341, 2203, 43, 54, "Input"],
Cell[CellGroupData[{
Cell[206114, 4388, 533, 10, 32, "Input",
CellID->675551318],
Cell[206650, 4400, 79485, 1498, 227, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[286172, 5903, 95, 1, 64, "Section"],
Cell[CellGroupData[{
Cell[286292, 5908, 447, 9, 32, "Input"],
Cell[286742, 5919, 2610, 47, 160, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[289389, 5971, 298, 7, 32, "Input"],
Cell[289690, 5980, 130, 2, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[289857, 5987, 288, 7, 32, "Input"],
Cell[290148, 5996, 51587, 966, 378, "Output"]
}, Open ]],
Cell[341750, 6965, 1016, 24, 54, "Input"],
Cell[CellGroupData[{
Cell[342791, 6993, 158, 3, 32, "Input"],
Cell[342952, 6998, 13887, 271, 176, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[356876, 7274, 264, 5, 32, "Input"],
Cell[357143, 7281, 484, 9, 36, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[357664, 7295, 1895, 36, 68, "Input"],
Cell[359562, 7333, 107, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[359706, 7339, 1983, 39, 68, "Input"],
Cell[361692, 7380, 9227, 225, 138, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[370968, 7611, 96, 1, 64, "Section"],
Cell[371067, 7614, 432, 9, 33, "Text"]
}, Open ]],
Cell[CellGroupData[{
Cell[371536, 7628, 100, 1, 64, "Section"],
Cell[371639, 7631, 104, 1, 30, "Text"]
}, Open ]],
Cell[CellGroupData[{
Cell[371780, 7637, 152, 2, 64, "Section"],
Cell[371935, 7641, 400, 8, 87, "Text"]
}, Open ]],
Cell[CellGroupData[{
Cell[372372, 7654, 93, 1, 64, "Section"],
Cell[372468, 7657, 237, 3, 30, "Text"],
Cell[372708, 7662, 248, 3, 30, "Text"]
}, Open ]],
Cell[372971, 7668, 89, 1, 64, "Section"],
Cell[CellGroupData[{
Cell[373085, 7673, 139, 5, 25, "Subsubtitle"],
Cell[373227, 7680, 682, 20, 35, "Subsubtitle"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)